Skip to main content
Log in

Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp.

  • Review
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Streptomyces is well characterized by an ability to produce a wide variety of secondary metabolites including antibiotics, whose expression is strictly controlled by small diffusible signaling molecules at nano-molar concentrations. The signaling molecules identified to date are classified into three skeletons; γ-butyrolactones, furans, and γ-butenolides. Accumulated data suggest the structural diversity of the signaling molecules in Streptomyces species and their potential in activating cryptic secondary metabolite biosynthetic pathways. Several genome mining approaches to activate silent biosynthetic gene clusters have been reported for natural product discovery. This review updates recent examples on genetic manipulation including blockage of metabolic pathways together with inactivation of transcriptional repressor genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aigle B, Pang X, Decaris B, Leblond P (2005) Involvement of AlpV, a new member of the Streptomyces antibiotic regulatory protein family, in regulation of the duplicated type II polyketide synthase alp gene cluster in Streptomyces ambofaciens. J Bacteriol 187:2491–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arakawa K (2014) Genetic and biochemical analysis of the antibiotic biosynthetic gene clusters on the Streptomyces linear plasmid. Biosci Biotechnol Biochem 78:183–189. https://doi.org/10.1080/09168451.2014.882761

    Article  CAS  PubMed  Google Scholar 

  • Arakawa K, Mochizuki S, Yamada K, Noma T, Kinashi H (2007) γ-Butyrolactone autoregulator-receptor system involved in lankacidin and lankamycin production and morphological differentiation in Streptomyces rochei. Microbiology 153:1817–1827

    Article  CAS  PubMed  Google Scholar 

  • Arakawa K, Cao Zm Suzuki N, Kinashi H (2011) Isolation, structural elucidation, and biosynthesis of 15-norlankamycin derivatives produced by a type-II thioesterase disruptant of Streptomyces rochei. Tetrahedron 67:5199–5205

    Article  CAS  Google Scholar 

  • Arakawa K, Tsuda N, Taniguchi A, Kinashi H (2012) The butenolide signaling molecules SRB1 and SRB2 induce lankacidin and lankamycin production in Streptomyces rochei. ChemBioChem 13:1447–1457

    Article  CAS  PubMed  Google Scholar 

  • Aroonsri A, Kitani S, Hashimoto J, Kosone I, Izumikawa M, Komatsu M, Fujita N, Takahashi Y, Shin-ya K, Ikeda H, Nihira T (2012) Pleiotropic control of secondary metabolism and morphological development by KsbC, a butyrolactone autoregulator receptor homologue in Kitasatospora setae. Appl Environ Microbiol 78:8015–8024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bate N, Butler AR, Gandecha AR, Cundliffe E (1999) Multiple regulatory genes in the tylosin biosynthetic cluster of Streptomyces fradiae. Chem Biol 6:617–624

    Article  CAS  PubMed  Google Scholar 

  • Bate N, Stratigopoulos G, Cundliffe E (2002) Differential roles of two SARP-encoding regulatory genes during tylosin biosynthesis. Mol Microbiol 43:449–458

    Article  CAS  PubMed  Google Scholar 

  • Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215

    Article  CAS  PubMed  Google Scholar 

  • Bunet R, Mendes MV, Rouhier N, Pang X, Hotel L, Leblond P, Aigle B (2008) Regulation of the synthesis of the angucyclinone antibiotic alpomycin in Streptomyces ambofaciens by the autoregulator receptor AlpZ and its specific ligand. J Bacteriol 190:3293–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunet R, Song L, Mendes MV, Corre C, Hotel L, Rouhier N, Framboisier X, Leblond P, Challis GL, Aigle B (2011) Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of kinamycins. J Bacteriol 193:1142–1153

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Yoshida R, Kinashi H, Arakawa K (2015) Blockage of the early step of lankacidin biosynthesis caused a large production of pentamycin, citreodiol, and epi-citreodiol in Streptomyces rochei. J Antibiot 68:328–333. https://doi.org/10.1038/ja.2014.160

    Article  CAS  PubMed  Google Scholar 

  • Chater KF (2001) Regulation of sporulation in Strteptomyces coelicolor A3(2): a checkpoint multiplex? Curr Opin Microbiol 4:667–673

    Article  CAS  PubMed  Google Scholar 

  • Corre C, Song L, O’Rourke S, Chater KF, Challis GL (2008) 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci USA 105:17510–17515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craney A, Ahmed S, Nodwell J (2013) Towards a new science of secondary metabolism. J Antibiot 66:387–400

    Article  CAS  PubMed  Google Scholar 

  • Gottelt M, Kol S, Gomez-Escribano JP, Bibb M, Takano E (2010) Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology 156:2343–2353

    Article  CAS  PubMed  Google Scholar 

  • Hara O, Beppu T (1982) Mutants blocked in streptomycin production in Streptomyces griseus—the role of A-factor. J Antibiot 35:349–358

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi S, Beppu T (2007) Hormonal control by A-factor of morphological development and secondary metabolism in Streptomyces. Prod Jpn Acad Ser B Phys Biol Sci 83:277–295. https://doi.org/10.2183/pjab/83.277

    Article  CAS  Google Scholar 

  • Hsiao NH, Nakayama S, Merlo ME, de Vries M, Bunet R, Kitani S, Nihira T, Takano E (2009) Analysis of two additional signaling molecules in Streptomyces coelicolor and the development of a butyrolactone-specific reporter system. Chem Biol 16:951–960

    Article  CAS  PubMed  Google Scholar 

  • Kawauchi R, Akashi T, Kamitani Y, Sy A, Wangchaisoonthorn U, Nihira T, Yamada Y (2000) Identification of an AfsA homologue (BarX) from Streptomyces virginiae as a pleiotropic regulator controlling autoregulator biosynthesis, virginiamycin biosynthesis and virginiamycin M1 resistance. Mol Microbiol 36:302–313

    Article  Google Scholar 

  • Khokhlov AS, Tovarova II, Borisova LN, Pliner SA, Shevchenko LN, Kornitskaia EI, Ivkina NS, Rapoport IA (1967) The A-factor, responsible for streptomycin biosynthesis by mutant strains of Actinomyces streptomycini. Dokl Akad Nauk SSSR 177:232–235

    CAS  PubMed  Google Scholar 

  • Kinoshita H, Ipposhi H, Okamoto S, Nakano H, Nihira T, Yamada Y (1997) Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in Streptomyces virginiae. J Bacteriol 179:6986–6993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitani S, Yamada Y, Nihira T (2001) Gene replacement analysis of the butyrolactone autoregulator receptor (FarA) reveals that FarA acts as a Novel regulator in secondary metabolism of Streptomyces lavendulae FRI-5. J Bacteriol 183:4357–4363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitani S, Miyamoto KT, Takamatsu S, Herawati E, Iguchi H, Nishitomi K, Uchida M, Nagamitsu T, Omura S, Ikeda H, Nihira T (2011) Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc Natl Acad Sci USA 108:16410–16415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo K, Higuchi Y, Sakuda S, Nihira T, Yamada Y (1989) New virginiae butanolides from Streptomyces virginiae. J Antibiot 42:1873–1876

    Article  CAS  PubMed  Google Scholar 

  • Kunitake H, Hiramatsu T, Kinashi H, Arakawa K (2015) Isolation and biosynthesis of an azoxyalkene compound produced by a multiple gene disruptant of Streptomyces rochei. ChemBioChem 16:2237–2243. https://doi.org/10.1002/cbic.201500393

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang J, Li S, Ji J, Wang W, Yang K (2015) ScbR- and ScbR2-mediated signal transduction networks coordinate complex physiological responses in Streptomyces coelicolor. Sci Rep 5:14831. https://doi.org/10.1038/srep14831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuno K, Yamada Y, Lee CK, Nihira T (2004) Identification by gene deletion analysis of barB as a negative regulator controlling an early process of virginiamycin biosynthesis in Streptomyces virginiae. Arch Microbiol 181:52–59

    Article  CAS  PubMed  Google Scholar 

  • Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26:1362–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu G, Chater KF, Tian Y, Zhang J, Tan H (2016) Specialized metabolites regulating antibiotic biosynthesis in Streptomyces spp. FEMS Microbiol Rev 40:554–573

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi Y, Kameyama S, Onaka H, Horinouchi S (1999) The A-factor regulatory cascade leading to streptomycin production in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol 34:102–111

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi Y, Yamazaki H, Kato JY, Tomono A, Horinouchi S (2005) AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotechnol Biochem 69:431–439

    Article  CAS  PubMed  Google Scholar 

  • Olano C, Lombó F, Méndez C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10:281–292

    Article  CAS  PubMed  Google Scholar 

  • Onaka H, Ando N, Nihira T, Yamada Y, Beppu T, Horinouchi S (1995) Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J Bacteriol 177:6083–6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutledge PJ, Challis GL (2015) Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 13:509–523

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Nihira T, Sakuda S, Yanagimoto M, Yamada Y (1989) Isolation and structure of a new butyrolactone autoregulator from Streptomyces sp. FRI-5. J Ferment Bioeng 68:170–173

    Article  CAS  Google Scholar 

  • Stratigopoulos G, Cundliffe E (2002) Expression analysis of the tylosin-biosynthetic gene cluster: pivotal regulatory role of the tylQ product. Chem Biol 9:71–78

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zhou X, Liu J, Bao K, Zhang G, Tu G, Kieser T, Deng Z (2002) ‘Streptomyces nanchangensis’, a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters. Microbiology 148:361–371

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Mochizuki S, Yamamoto S, Arakawa K, Kinashi H (2010) Regulation of lankamycin biosynthesis in Streptomyces rochei by two SARP genes, srrY and srrZ. Biosci Biotechnol Biochem 74:819–827

    Article  CAS  PubMed  Google Scholar 

  • Takano E (2006) γ-Butyrolactones: Streptomyces signaling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9:287–294

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Chakaraburtty R, Nihira T, Yamada Y, Bibb MJ (2001) A complex role for the γ-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 41:1015–1028

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Kinoshita H, Mersinias V, Bucca G, Hotchkiss G, Nihira T, Smith CP, Bibb M, Wohlleben W, Chater K (2005) A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol Microbiol 56:465–479

    Article  CAS  PubMed  Google Scholar 

  • Tatsuno S, Arakawa K, Kinashi H (2009) Extensive mutational analysis of modular-iterative mixed polyketide biosynthesis of lankacidin in Streptomyces rochei. Biosci Biotechnol Biochem 73:2712–2719

    Article  CAS  PubMed  Google Scholar 

  • Thao NB, Kitani S, Nitta H, Tomioka T, Nihira T (2017) Discovering potential Streptomyces hormone producers by using disruptants of essential biosynthetic genes as indicator strains. J Antibiot 70:1004–1008

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Vining LC (2003) Control of growth, secondary metabolism and sporulation in Streptomyces venezuelae ISP5230 by jadW1, a member of the afsA family of γ-butyrolactone regulatory genes. Microbiology 149:1991–2004

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Tian X, Wang J, Yang H, Fan K, Xu G, Yang K, Tan H (2009) Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci USA 106:8617–8622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JB, Zhang F, Pu JY, Zhao J, Zhao QF, Tang GL (2014) Characterization of AvaR1, an autoregulator receptor that negatively controls avermectins production in a high avermectin-producing strain. Biotechnol Lett 36:813–819

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Wang J, Wang L, Tian X, Yang H, Fan K, Yang K, Tan H (2010) “Pseudo” γ-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem 285:27440–27448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada Y (1995) Butyrolactone autoregulators, inducers of secondary metabolites, in Streptomyces. Actinomycetol 9:57–65

    Article  Google Scholar 

  • Yamamoto S, He Y, Arakawa K, Kinashi H (2008) γ-Butyrolactone-dependent expression of the SARP gene srrY plays a central role in the regulatory cascade leading to lankacidin and lankamycin production in Streptomyces rochei. J Bacteriol 190:1308–1316

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Han L, Vining LC (1995) Regulation of jadomycin B production in Streptomyces venezuelae ISP5230: involvement of a repressor gene, jadR2. J Bacteriol 177:6111–6117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. ChemBioChem 10:625–633

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Sun D, Liu W, Chen Z, Li J, Wen Y (2016) AvaR2, a pseudo γ-butyrolactone receptor homologue from Streptomyces avermitilis, is a pleiotropic repressor of avermectin and avenolide biosynthesis and cell growth. Mol Microbiol 102:562–578

    Article  CAS  PubMed  Google Scholar 

  • Zou Z, Du D, Zhang Y, Zhang J, Niu G, Tan H (2014) A γ-butyrolactone-sensing activator/repressor, JadR3, controls a regulatory mini-network for jadomycin biosynthesis. Mol Microbiol 94:490–505

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KA was supported by Grants-in-Aid for Scientific Research on Innovative Areas from MEXT (Grant Nos. 25108718 and 17H05446), Grants-in-Aid for Scientific Research (B) (Grant No. 16H04917) from JSPS, and JSPS A3 Foresight Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Arakawa.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arakawa, K. Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp.. Antonie van Leeuwenhoek 111, 743–751 (2018). https://doi.org/10.1007/s10482-018-1052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1052-6

Keywords

Navigation