Skip to main content
Log in

A highly extended high-efficiency range Doherty power amplifier for high PAPR communication signals

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, design, simulation and fabrication of a new highly extended high-efficiency range Doherty power amplifier (DPA) for high peak to average power ratio (PAPR) communication signals were presented with a main and only a single auxiliary amplifier. In order to extend the output high-efficiency range, it employed non-equal cells as main and auxiliary amplifiers in the complex combining load (CCL) methodology. As a new method, a new design parameter (\(\gamma\)) was added to the conventional complex combining load method. The effect of the new added design parameter on extension of output back-off (OBO) were analyzed and formulated. Also, to verify the proposed methodology, a DPA with 12 dB of OBO was designed, simulated and fabricated for WCDMA applications. Large signal continuous wave measurement results show the power gain of 11 dB with the drain efficiency of 53% at 12 dB of OBO. Two-tone test exhibits the third-order intermodulation distortion lower than − 34 dBc. Modulated wave simulations show over 51% of average drain efficiency and lower than − 31 dBc of adjacent channel leakage power ratio at output power level of 31.5 dBm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Darraji, R., & Ghannouchi, F. M. (2011). Digital Doherty amplifier with enhanced efficiency and extended range. IEEE Transactions on Microwave Theory and Techniques, 59(11), 2898–2909.

    Article  Google Scholar 

  2. Lee, Y. S., Lee, M. W., Kam, S. H., & Jeong, Y. H. (2009). A new wideband distributed Doherty amplifier for WCDMA repeater applications. IEEE Microwave and Wireless Components Letters, 19(10), 668–670.

    Article  Google Scholar 

  3. Raab, F., Asbeck, P., Cripps, S., Kenington, P., Popovic, Z., & Pothecary, N. (2009). Power amplifiers and transmitters for RF and microwave. IEEE Transactions on Microwave Theory and Techniques, 50(3), 814–826.

    Article  Google Scholar 

  4. Vittorio, C., Pirola, M., Quaglia, R., Jee, S., Cho, Y., & Kim, B. (2015). The Doherty power amplifier: Review of recent solutions and trends. IEEE Transactions on Microwave Theory and Techniques, 63(2), 559–571.

    Article  Google Scholar 

  5. Moazzen, Ha, Mohammadi, Ab, & Mirzavand, Ra. (2017). Multilevel outphasing system using six-port modulators and Doherty power amplifiers. Analog Integrated Circuits and Signal Processing, 90(2), 361–372.

    Article  Google Scholar 

  6. Chun, S. H., Jang, D. H., Kim, J. Y., & Kim, J. H. (2010). Inverted asymmetric Doherty power amplifier driven by two-stage symmetric Doherty amplifier. Electronics Letters, 46(17), 1208–1209.

    Article  Google Scholar 

  7. Doherty, W. H. (1936). New high efficiency power amplifier for modulated waves. Proceedings of the Institute of Radio Engineers, 24, 1163–1182.

    Google Scholar 

  8. Cripps, S. C. (2006). RF power amplifiers for wireless communications (pp. 290–303). Artech House: Norwood, MA.

    Google Scholar 

  9. Pengelly, R., Fager, C., & Ozen, M. (2016). Doherty’s legacy: A history of the Doherty power amplifier from 1936 to the present day. IEEE Microwave Magazine, 17(2), 41–58.

    Article  Google Scholar 

  10. Colantonio, P., Giannini, F., & Limiti, E. (2009). High efficiency RF and microwave solid state power amplifiers (pp. 435–498). Chippenham: Wiley.

    Google Scholar 

  11. Fang, X. H., & Cheng, K. K. (2014). Extension of high-efficiency range of Doherty amplifier by using complex combining load. IEEE Transactions on Microwave Theory and Techniques, 62(9), 2038–2047.

    Article  Google Scholar 

  12. Carneiro, M. L., Eric, Ke, & Didier, Be. (2015). Fully integrated Doherty power amplifier in CMOS 65 nm with constant PAE in Backoff. Analog Integrated Circuits and Signal Processing, 82(1), 89–97.

    Article  Google Scholar 

  13. Srirattana, N., Raghavan, A., Heo, D., Allen, P., & Joy, L. (2005). Analysis and design of a high-efficiency multistage Doherty power amplifier for wireless communications. IEEE Transactions on Microwave Theory and Techniques, 53(3), 852–860.

    Article  Google Scholar 

  14. Kim, I., Moon, J., Jee, S., & Kim, B. (2010). Optimized design of a highly efficient three-stage Doherty PA using gate adaptation. IEEE Transactions on Microwave Theory and Techniques, 58(10), 2562–2574.

    Article  Google Scholar 

  15. Pelk, M. J., Edmund Neo, W. C., Gajadharsing, J. R., Pengelly, R. S., & Vreede, L. C. N. (2008). A high-efficiency 100-w GaN three-way Doherty amplifier for base-station applications. IEEE Transactions on Microwave Theory and Techniques, 56(7), 1582–1591.

    Article  Google Scholar 

  16. Nghiem, X. A., Guan, J., & Negra, R. (2014). Design of a broadband three-way sequential Doherty power amplifier for modern wireless communications. Tampa, FL: IEEE MTT-S International Microwave Symposium.

    Book  Google Scholar 

  17. Grebennikov, A., & Bulja, S. (2012). High-efficiency Doherty power amplifiers: historical aspect and modern trends. Proceedings of the IEEE, 100(12), 3190–3219.

    Article  Google Scholar 

  18. Kim, J., Kim, J., Moon, J., Son, J., Kim, I., Jee, S., et al. (2011). Saturated power amplifier optimized for efficiency using self-generated harmonic current and voltage. IEEE Transactions on Microwave Theory and Techniques, 59(23), 2049–2058.

    Article  Google Scholar 

  19. Moon, J., Kim, J., Kim, J. Kim, & Kim, B. (2011). Efficiency enhancement of Doherty amplifier through mitigation of the knee voltage effect. IEEE Transactions on Microwave Theory and Techniques, 59(1), 143–152.

    Article  Google Scholar 

  20. Wu, D. Y., & Boumaiza, S. (2013). A mixed-technology asymmetrically biased extended and reconfigurable Doherty amplifier with improved power utilization factor. IEEE Transactions on Microwave Theory and Techniques, 61(5), 1946–1956.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoud Dousti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, K., Dousti, M. & Asadi, S. A highly extended high-efficiency range Doherty power amplifier for high PAPR communication signals. Analog Integr Circ Sig Process 97, 333–341 (2018). https://doi.org/10.1007/s10470-018-1280-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1280-8

Keywords

Navigation