Skip to main content
Log in

An accurate time-to-digital converter based on a self-timed ring oscillator for on-the-fly time measurement

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a new architecture of a time-to-digital converter (TDC) based on a self-timed ring (STR) oscillator with sub-gate delay resolution. The proposed TDC can virtually achieve as fine as desired time resolution by simply increasing its number of stages thanks to the STR unique features. Exploiting the phase difference between events propagating in the same STR without collision, this TDC benefit from a uniform phase distribution. Thus, under certain conditions, a regular time base can be generated and a compact readout algorithm can be applied. Moreover, the proposed technique allows on-the-fly time measurement on fast non-periodic signals. As a proof-of-concept, an STR-based TDC with only 9-stages has been simulated using 28 nm FDSOI technology. A time resolution of 8.9 ps has been achieved. Without using calibration, the measured DNL and INL are 0.44 and 0.40 LSB, respectively. Simulation results point out the advantage of this TDC in terms of measurement accuracy and state the limit of the on-the-fly measurement according to the dependency between the jitter and the time resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Henzler, S. (2010). Time-to-digital converters. New York: Springer.

    Book  Google Scholar 

  2. Straayer, M. Z., & Perrott, M. H. (2009). A multi-path gated ring oscillator TDC with first-order noise shaping. IEEE Journal of Solid-State Circuits, 44(4), 1089–1098.

    Article  Google Scholar 

  3. Chen, W., & Papavassiliou, C. (2013). A low power 10-bit time-to-digital converter utilizing Vernier delay lines. In 2013 UKSim 15th international conference on computer modeling and simulation (UKSim), April 2013 (pp. 774–779).

  4. Vercesi, L., Liscidini, A., & Castello, R. (2010). Two-dimensions vernier time-to-digital converter. IEEE Journal of Solid-State Circuits, 45(8), 1504–1512.

    Article  Google Scholar 

  5. Lee, M., & Abidi, A. A. (2008). A 9 b, 1.25 ps resolution coarse–fine time-to-digital converter in 90 nm CMOS that amplifies a time residue. IEEE Journal of Solid-State Circuits, 43(4), 769–777.

    Article  Google Scholar 

  6. Wu, J., Jiang, Q., Song, K., Zheng, L., Sun, D., & Sun, W. (2016). Implementation of a high-precision and wide-range time-to-digital converter with three-level conversion scheme. IEEE Transactions on Circuits and Systems II: Express Briefs, PP(99), 1.

    Google Scholar 

  7. Arai, Y., Matsumura, T., & Endo, K. I. (1992). A CMOS four-channel times; 1K time memory LSI with 1-ns/b resolution. IEEE Journal of Solid-State Circuits, 27(3), 359–364.

    Article  Google Scholar 

  8. Dudek, P., Szczepanski, S., & Hatfield, J. V. (2000). A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line. IEEE Journal of Solid-State Circuits, 35(2), 240–247.

    Article  Google Scholar 

  9. Cheng, Z., Zheng, X., Deen, M. J., & Peng, H. (2016). Recent developments and design challenges of high-performance ring oscillator CMOS time-to-digital converters. IEEE Transactions on Electron Devices, 63(1), 235–251.

    Article  Google Scholar 

  10. Jovanovic, G. S., & Stojcev, M. K. (2009). Vernier’s delay line time-to-digital converter. Applied Mathematics and Mechanics, 1(1), 11–20.

    Google Scholar 

  11. Yu, J., Dai, F. F., & Jaeger, R. C. (2010). A 12-bit vernier ring time-to-digital converter in 0.13 \(\upmu {\text{ m }}\) CMOS technology. IEEE Journal of Solid-State Circuits, 45(4), 830–842.

    Article  Google Scholar 

  12. Lu, P., Liscidini, A., & Andreani, P. (2012). A 3.6 mW, 90 nm CMOS gated-vernier time-to-digital converter with an equivalent resolution of 3.2 ps. IEEE Journal of Solid-State Circuits, 47(7), 1626–1635.

    Article  Google Scholar 

  13. Lu, P., Andreani, P., & Liscidini, A. (2013). A 2-D GRO Vernier time-to-digital converter with large input range and small latency. In 2013 IEEE radio frequency integrated circuits symposium (RFIC), June 2013 (pp. 151–154).

  14. Narku-Tetteh, N., Titriku, A., & Palermo, S. (2014). A 15b, sub-10ps resolution, low dead time, wide range two-stage TDC. In 2014 IEEE 57th international Midwest symposium on circuits and systems (MWSCAS), August 2014 (pp. 13–16).

  15. Sutherland, I. E. (1989). Micropipelines. Communications of the ACM, 32(6), 720–738.

    Article  Google Scholar 

  16. Hamon, J., Fesquet, L., Miscopein, B., & Renaudin, M. (2009). Constrained asynchronous ring structures for robust digital oscillators. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(7), 907–919.

    Article  Google Scholar 

  17. Fairbanks, S. (2009). High precision timing using self-timed circuits. Computer Laboratory, University of Cambridge, Technical report, 2009. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-738.pdf

  18. Hamon, J., Fesquet, L., Miscopein, B., & Renaudin, M. (2008) High-level time-accurate model for the design of self-timed ring oscillators. In 2008 14th IEEE international symposium on asynchronous circuits and systems, April 2008 (pp. 29–38).

  19. Elissati, O., Cherkaoui, A., El-Hadbi, A., Rieubon, S., & Fesquet, L. (2018). Multi-phase low-noise digital ring oscillators with sub-gate-delay resolution. AEU: International Journal of Electronics and Communications, 84, 74–83.

    Google Scholar 

  20. El-Hadbi, A., Cherkaoui, A., Elissati, O., Simatic, J., & Fesquet, L. (2017). On-the-fly and sub-gate-delay resolution TDC based on self-timed ring: A proof of concept. In 2017 15th IEEE international new circuits and systems conference (NEWCAS), June 2017 (pp. 305–308).

  21. Cherkaoui, A., Fischer, V., Aubert, A., & Fesquet, L. (2013) A self-timed ring based true random number generator. In 2013 IEEE 19th international symposium on asynchronous circuits and systems, May 2013 (pp. 99–106).

  22. Yahya, E., Elissati, O., Zakaria, H., Fesquet, L., & Renaudin, M. (2009). Programmable/stoppable oscillator based on self-timed rings. In 2009 15th IEEE symposium on asynchronous circuits and systems, May (pp. 3–12).

  23. Shams, M., Ebergen, J. C., & Elmasry, M. I. (1998). Modeling and comparing CMOS implementations of the C-element. IEEE Transactions on Very Large Scale Integration Systems, 6(4), 563–567.

    Article  Google Scholar 

  24. Spars, J., & Furber, S. (2010). Principles of asynchronous circuit design: A systems perspective (incorporateda). New York: Springer.

    Google Scholar 

  25. Caram, J. P., Galloway, J., & Kenney, J. S. (2018). Time-to-digital converter with sample-and-hold and quantization noise scrambling using harmonics in ring oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(1), 74–83.

    Article  MathSciNet  Google Scholar 

  26. Cadeddu, S., Aloisio, A., Ameli, F., Bocci, V., Casu, L., Giordano, R., et al. (2017). A time-to-digital converter based on a digitally controlled oscillator. IEEE Transactions on Nuclear Science, 64(8), 2441–2448.

    Google Scholar 

  27. Wu, B., Zhu, S., Zhou, Y., & Chiu, Y. (2018). A 9-bit 215 ms/s folding-flash time-to-digital converter based on redundant remainder number system in 45-nm CMOS. IEEE Journal of Solid-State Circuits, PP(99), 1–11.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by “Région Rhône-Alpes” (France): Accueil DOC Grant No. 15.005282.01 and coopera Project No. 17263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assia El-Hadbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Hadbi, A., Cherkaoui, A., Elissati, O. et al. An accurate time-to-digital converter based on a self-timed ring oscillator for on-the-fly time measurement. Analog Integr Circ Sig Process 97, 471–481 (2018). https://doi.org/10.1007/s10470-018-1223-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1223-4

Keywords

Navigation