Skip to main content
Log in

Novel nonlinearity minimized time-to-digital converters with digital calibration technique

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a low nonlinearity, four channel Gated Ring Oscillator (GRO) based Time-to-Digital Converters (TDC) in Xilinx 28 nm Virtex 7 Field Programmable Gate Arrays. Gray code counter provides a coarse time measurement value, and the fine residue information is obtained from the 64 stages of sampling registers outputs. GRO based TDC places the carry logics as a delay element in a ring topology such that it can be reused for measuring large time intervals. Online calibration by the code density analysis is implemented to minimize linearity errors. After calibration and normalization, the proposed architecture has achieved an improved Differential Non-linearity in the range of [− 0.12, 0.11] LSB, and Integral Non-linearity in the range of [− 0.2, 0.4] LSB. The proposed architecture is also cost effective in terms of resource consumption with a high resolution of 15 ps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All data generated or analyzed in this article are obtained based on simulation result of the circuit with different clock signals. The datasets generated are not publicly available. The proposed architecture is simulated with random inputs and values are presented in figures.

References

  1. Cadeddu, S., Aloisio, A., Ameli, F., Bocci, V., Casu, L., Giordano, R., et al. (2017). A time-to-digital converter based on a digitally controlled oscillator. IEEE Transactions on Nuclear Science, 64(8), 2441–2448.

    Google Scholar 

  2. Lee, S., Seo, Y., Suh, Y., Park, H., & Sim, J. (2010). A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 μm CMOS. IEEE Journal Solid-State Circuits, 45(12), 2874–2881.

    Article  Google Scholar 

  3. Enomoto, R., Iizuka, T., Koga, T., Nakura, T., & Asada, K. (2019). A 16-bit 2.0-ps resolution two-step TDC in 0.18-μm CMOS utilizing pulse-shrinking fine stage with built-in coarse gain calibration. IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, 27(1), 11–19.

    Article  Google Scholar 

  4. Palojarvi, P., Maatta, K., & Kostamovaara, J. (1997). Integrated time-of-flight laser radar. IEEE Transactions on Instrumentation and Measurement, 46(4), 996–999.

    Article  Google Scholar 

  5. Sano, K. et al., (2013). Design and high-speed tests of a single-flux-quantum time-to-digital converter for time-of-flight mass spectrometry. 2013 IEEE 14th International Superconductive Electronics Conference (ISEC), Cambridge, MA, pp. 1–3

  6. Seo, M. W., et al. (2016). A 10 ps time-resolution CMOS image sensor with two-tap true-CDS lock-in pixels for fluorescence lifetime imaging. IEEE Journal of Solid-State Circuits, 51(1), 141–154.

    Article  Google Scholar 

  7. Roberts, G. W., & Ali-Bakhshian, M. (2010). A brief introduction to time-to-digital and digital-to-time converters. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(3), 153–157. https://doi.org/10.1109/TCSII.2010.2043382

    Article  Google Scholar 

  8. Cui, K., Ren, Z., Li, X., Liu, Z., & Zhu, R. (2017). A high-linearity, ring-oscillator-based, vernier time-to-digital converter utilizing carry chains in FPGAs. IEEE Transactions on Nuclear Science, 64(1), 697–704.

    Article  Google Scholar 

  9. Kalisz, J. (2004). Review of methods for time interval measurements with picosecond resolution. Metrologis, 41, 17–32.

    Article  Google Scholar 

  10. Wang, J., Liu, S., Shen, Q., Li, H., & An, Q. (2010). A fully fledged TDC implemented in field-programmable gate arrays. IEEE Transactions on Nuclear Science, 57(2), 446–450.

    Article  Google Scholar 

  11. Lundberg, K. H. (2002). Analog-to-digital converter testing. http://web.mit.edu/klund/www/papers/UNP_A2Dtest.pdf

  12. Narasimman, R., Prabhakar, A., & Chandrachoodan, N. (2015). Implementation of a 30 ps resolution time to digital converter in FPGA. In International Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV), pp. 12–17.

  13. Torres, J., Aguilar, A., Garcia-Olcina, R., Martinez, P. A., Martos, J., Soret, J., et al. (2014). Time-to-digital converter based on FPGA with multiple channel capability. IEEE Transactions on Nuclear Science, 61(1), 107–114.

    Article  Google Scholar 

  14. Zhang, J., & Zhou, D. (2015). A new delay line loops shrinking time-to-digital converter in low-cost FPGA. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 771, 10–16.

    Article  Google Scholar 

  15. Wu, J. (2009). On-chip processing for the wave union TDC implemented in FPGA. In 2009 16th IEEE-NPSS Real Time Conference. pp. 279–282.

  16. Shen, Q., Liu, S., Qi, B., An, Q., Liao, S., Shang, P., et al. (2015). A 1.7 ps equivalent bin size and 4.2 ps RMS FPGA TDC based on multichain measurements averaging method. IEEE Transactions on Nuclear Science, 62(3), 947–954.

    Article  Google Scholar 

  17. Zhang, M., Wang, H., & Liu, Y. (2017). A 7.4 ps FPGA-based TDC with a 1024-unit measurement matrix. Sensors, 17(4), 865.

    Article  Google Scholar 

  18. Tontini, A., Gasparini, L., Pancheri, L., & Passerone, R. (2018). Design and characterization of a low-cost FPGA-based TDC. IEEE Transactions on Nuclear Science, 65(2), 680–690.

    Article  Google Scholar 

  19. Zhang, M., Wang, H., & Liu, Y. (2017). Digital-to-time converter with 3.93 ps resolution implemented on FPGA chips. IEEE Access, 5, 6842–6848.

    Article  Google Scholar 

  20. Maamoun, M., Arami, S., Beguenane, R., Benbelkacem, A., & Meraghni, A. (2017). A 3ps resolution time-to-digital converter in low-cost FPGA for laser rangefinder. Proceedings of the World Congress on Engineering, 2017(July), 5–7.

    Google Scholar 

  21. Park, D., & Kim, J. (2020). A 7-GHz fast-lock two-step time-to-digital converter-based all-digital DLL. Circuits, System and Signal Processing, 39, 1715–1734. https://doi.org/10.1007/s00034-019-01230-x

    Article  Google Scholar 

  22. Wang, Y., & Liu, C. (2003). A nonlinearity minimization-oriented resource saving time-to-digital converter implemented in a 28 nm Xilinx FPGA. IEEE Transactions Nuclear Science, 62(5), 2003–2009.

    Article  MathSciNet  Google Scholar 

  23. Liu, C., & Wang, Y. (2015). A 128-channel, 710 M samples/second, and less than 10 ps RMS resolution time-to-digital converter implemented in a Kintex-7 FPGA. IEEE Transactions on Nuclear Science, 62, 773–783.

    Article  Google Scholar 

  24. Sano, Y., Horii, Y., Ikeno, M., Sasaki, O., Tomoto, M., & Uchida, T. (2017). Subnanosecond time-to-digital converter implemented in a kintex-7 FPGA. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 874, 50–56.

    Article  Google Scholar 

  25. Kim, K., Kim, Y., Yu, W., and &, S. (2012). A 7b, 3.75 ps resolution two step time-to-digital converter in 65 nm CMOS using pulse-train time amplifier. In Proceeding VLSI Circuits Symp., pp. 192–193.

  26. Kim, B., Kim, H., & Kim C. H. (2015). An 8bit, 2.6ps two-step TDC in 65 nm CMOS employing a switched ring-oscillator based time amplifier. In Proceedings of IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4.

  27. Carra, P., Bertazzoni, M., Bisogni, M. G., Cela Ruiz, J. M., Del Guerra, A., Gascon, D., et al. (2019). Auto-calibrating TDC for an SoC-FPGA data acquisition system. IEEE Transactions on Radiation and Plasma Medical Sciences, 3(5), 549–556.

    Article  Google Scholar 

  28. Chen, H., Zhang, Y., & Li, D. D. (2017). A low non-linearity, missing-code free time-to-digital converter based on 28-nm FPGAs with embedded bin-width calibrations. IEEE Transactions on Instrumentation and Measurement, 66(7), 1912–1921.

    Article  Google Scholar 

  29. Mhiri, M., Saad, S., Hammadi, A. B., & Besbes, K. (2017). A new hybrid TDC based on GRO-pseudo delay architecture with fractional code and wide time range detection for divider-less ADPLL. Analog Integrated Circuits and Signal Processing, 93, 265–275.

    Article  Google Scholar 

  30. Wang, Y., Cao, Q., & Liu, C. (2018). A multi-chain merged tapped delay line for high precision time-to-digital converters n FPGAs. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(1), 96–100.

    Google Scholar 

  31. Cui, K., Li, X., Liu, Z., & Zhu, R. (2017). Toward implementing multi channels, ring-oscillator-based, vernier time-to-digital converter in FPGAs: key design points and construction method. IEEE Transactions on Radiation and Plasma Medical Sciences, 1(5), 391–399.

    Article  Google Scholar 

  32. Wang, Y., Kuang, J., Liu, C., & Cao, Q. (2017). A 3.9-ps RMS precision time-to-digital converter using ones-counter encoding scheme in a kintex-7 FPGA. IEEE Transactions on Nuclear Science, 64(10), 2713–2718.

    Article  Google Scholar 

  33. Zheng, J., Cao, P., Jiang, D., & An, Q. (2017). Low-cost FPGA TDC with high resolution and density. IEEE Transactions on Nuclear Science, 64(6), 1401–1408.

    Article  Google Scholar 

  34. Chen, Yuan-Ho. (2019). Time resolution improvement using dual delay lines for field-programmable-gate-array-based time-to-digital converters with real-time calibration. Applied Science, 9(1), 20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Latha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latha, P., Sivakumar, R., Rao, Y.V.R. et al. Novel nonlinearity minimized time-to-digital converters with digital calibration technique. Analog Integr Circ Sig Process 113, 9–25 (2022). https://doi.org/10.1007/s10470-022-02065-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-022-02065-4

Keywords

Navigation