Skip to main content
Log in

Low quiescent current capacitorless small gain stages LDO with controlled pass transistors

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A low quiescent current 180-nm output-capacitorless low-dropout regulator with small-gain stages (SGSs) is presented in this paper. The proposed technique permits the regulator to distribute the load current into two power transistors depending on the demand of the load using a controller based on load variation criterion. SGSs are introduced to enhance loop gain without low-frequency poles. The proposed architecture does not require compensation capacitor. Thus, the active chip area is reduced to 73.59 µm × 36 µm. The measured results have shown that the fabricated circuit consumes a quiescent current of 1.8 µA at no load, regulating the output at 1 V with maximum output current of 50 mA from a voltage supply of 1.2 V. It achieves full range stability from 0 to 50 mA load current at a maximum 100 pF load capacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Buss, D. (n.d.). Technology in the internet age. In 2002 IEEE international solid-state circuits conference. Digest of technical papers (Cat. No. 02CH37315) (Vol. 2, pp. 12–365). IEEE. https://doi.org/10.1109/isscc.2002.992085.

  2. Salehi, M. R., Dastanian, R., Abiri, E., & Nejadhasan, S. (2014). A 147 µW, 0.8 V and 7.5 (mV/V) LIR regulator for UHF RFID application. AEU: International Journal of Electronics and Communications, 69(1), 133–140. https://doi.org/10.1016/j.aeue.2014.08.004.

    Google Scholar 

  3. Al-Shyoukh, M., Lee, Hoi, & Perez, R. (2007). A transient-enhanced low-quiescent current low-dropout regulator with buffer impedance attenuation. IEEE Journal of Solid-State Circuits, 42(8), 1732–1742. https://doi.org/10.1109/JSSC.2007.900281.

    Article  Google Scholar 

  4. Lam, Y. H., & Ki, W. H. (2008). A 0.9 V 0.35 µm adaptively biased CMOS LDO regulator with fast transient response. In Digest of Technical Papers—IEEE International Solid-State Circuits Conference (Vol. 51, pp. 442–444). https://doi.org/10.1109/isscc.2008.4523247.

  5. Leung, K. N., & Ng, Y. S. (2010). A CMOS low-dropout regulator with a momentarily current-boosting voltage buffer. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(9), 2312–2319. https://doi.org/10.1109/TCSI.2010.2043171.

    Article  MathSciNet  Google Scholar 

  6. Ho, M., Guo, J., Mak, K. H., Goh, W. L., Bu, S., Zheng, Y., et al. (2016). A CMOS low-dropout regulator with dominant-pole substitution. IEEE Transactions on Power Electronics, 31(9), 6362–6371. https://doi.org/10.1109/TPEL.2015.2503919.

    Article  Google Scholar 

  7. Rincon-Mora, G. A., & Allen, P. E. (1998). A low-voltage, low quiescent current, low drop-out regulator. IEEE Journal of Solid-State Circuits, 33(1), 36–44. https://doi.org/10.1109/4.654935.

    Article  Google Scholar 

  8. Saberkari, A., Fathipour, R., Martinez, H., Poveda, A., & Alarcon, E. (2013). Output-capacitorless CMOS LDO regulator based on high slew-rate current-mode transconductance amplifier. In ProceedingsIEEE international symposium on circuits and systems (pp. 1484–1487). https://doi.org/10.1109/iscas.2013.6572138.

  9. Milliken, R. J., Silva-Martinez, J., & Sanchez-Sinencio, E. (2007). Full on-chip CMOS low-dropout voltage regulator. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(9), 1879–1890. https://doi.org/10.1109/TCSI.2007.902615.

    Article  Google Scholar 

  10. Or, P. Y., & Leung, K. N. (2010). An output-capacitorless low-dropout regulator with direct voltage-spike detection. IEEE Journal of Solid-State Circuits, 45(2), 458–466. https://doi.org/10.1109/JSSC.2009.2034805.

    Article  Google Scholar 

  11. Ho, M., & Leung, K. N. (2011). Dynamic bias-current boosting technique for ultralow-power low-dropout regulator in biomedical applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(3), 174–178. https://doi.org/10.1109/TCSII.2011.2110330.

    Article  MathSciNet  Google Scholar 

  12. Chong, S., & Chan, P. K. (2013). A 0.9-µA quiescent current output-capacitorless LDO regulator with adaptive power transistors in 65-nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(4), 1072–1081. https://doi.org/10.1109/TCSI.2012.2215392.

    Article  Google Scholar 

  13. Fathipour, R., Saberkari, A., Martinez, H., & Alarcón, E. (2014). High slew rate current mode transconductance error amplifier for low quiescent current output-capacitorless CMOS LDO regulator. Integration, the VLSI Journal, 47(2), 204–212. https://doi.org/10.1016/j.vlsi.2013.10.005.

    Article  Google Scholar 

  14. Hosticka, B. J. (1979). Improvement of the gain of MOS amplifiers. IEEE Journal of Solid-State Circuits, 14(6), 1111–1114. https://doi.org/10.1109/JSSC.1979.1051324.

    Article  Google Scholar 

  15. Sackinger, E., & Guggenbuhl, W. (1990). A high-swing, high-impedance MOS cascode circuit. IEEE Journal of Solid-State Circuits, 25(1), 289–298. https://doi.org/10.1109/4.50316.

    Article  Google Scholar 

  16. Ho, M., Leung, K. N., & Mak, K. L. (2010). A low-power fast-transient 90-nm low-dropout regulator with multiple small-gain stages. IEEE Journal of Solid-State Circuits, 45(11), 2466–2475. https://doi.org/10.1109/JSSC.2010.2072611.

    Google Scholar 

  17. Leung, Ka Nang, & Mok, P. K. T. (2003). A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation. IEEE Journal of Solid-State Circuits, 38(10), 1691–1702. https://doi.org/10.1109/JSSC.2003.817256.

    Article  Google Scholar 

  18. Yosef-Hay, Y., Larsen, D. Ø., Muntal, P. L., & Jørgensen, I. H. H. (2017). Fully integrated, low drop-out linear voltage regulator in 180 nm CMOS. Analog Integrated Circuits and Signal Processing, 92(3), 427–436. https://doi.org/10.1007/s10470-017-1012-5.

    Article  Google Scholar 

  19. Keikhosravy, K., & Mirabbasi, S. (2014). A 0.13-μm CMOS low-power capacitor-less LDO regulator using bulk-modulation technique. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(11), 3105–3114. https://doi.org/10.1109/TCSI.2014.2334831.

    Article  Google Scholar 

  20. Saberkar, A., Qaraqanabadi, F., Shirmohammadli, V., Martinez, H., & Alarcon, E. (2016). Output-capacitorless segmented low-dropout voltage regulator with controlled pass transistors. International Journal of Circuit Theory and Applications, 2016(44), 460–475. https://doi.org/10.1002/cta.

    Article  Google Scholar 

  21. Lu, Y., Wang, Y., Pan, Q., Ki, W. H., & Yue, C. P. (2015). A fully-integrated low-dropout regulator with full-spectrum power supply rejection. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(3), 707–716. https://doi.org/10.1109/TCSI.2014.2380644.

    Article  MathSciNet  Google Scholar 

  22. Maity, A., & Patra, A. (2016). A single-stage low-dropout regulator with a wide dynamic range for generic applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(6), 2117–2127. https://doi.org/10.1109/TVLSI.2015.2503048.

    Google Scholar 

  23. Hazucha, P., Karnik, T., Bloechel, B. A., Parsons, C., Finan, D., & Borkar, S. (2005). Area-efficient linear regulator with ultra-fast load regulation. IEEE Journal of Solid-State Circuits, 40(4), 933–940. https://doi.org/10.1109/JSSC.2004.842831.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a research fund from Chosun University 2016. The author would like to thank IC Design Education Center (IDEC), South Korea for supporting Cadence EDA tools and providing fabrication facility of Multi-Project Wafer (MPW) for Magna Chip/SK Hynix process 0.18 µm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadeque Reza Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.R., Nadeem, I. Low quiescent current capacitorless small gain stages LDO with controlled pass transistors. Analog Integr Circ Sig Process 94, 323–331 (2018). https://doi.org/10.1007/s10470-017-1103-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-1103-3

Keywords

Navigation