Skip to main content

Advertisement

Log in

Fully integrated, low drop-out linear voltage regulator in 180 nm CMOS

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a capacitor-free low dropout (LDO) linear regulator based on a dual loop topology. The regulator utilizes two feedback loops to satisfy the challenges of hearing aid devices, which include fast transient performance and small voltage spikes under rapid load-current changes. The proposed design works without the need of a decoupling capacitor connected at the output and operates with a 0–100 pF capacitive load. The design has been taped out in a \(0.18\,\upmu \hbox {m}\) CMOS process. The proposed regulator has a low component count, area of \(0.012\, \hbox {mm}^2\) and is suitable for system-on-chip integration. It regulates the output voltage at 0.9 V from a 1.0–1.4 V supply. The measured results for a current step load from 250 to 500 \(\upmu \hbox {A}\) with a rise and fall time of \(1.5\,\upmu \hbox {s}\) are an overshoot of 26 mV and undershoot of 26 mV with a settling time of \(3.5\,\upmu \hbox {s}\) when \({C_L}\) between 0 and 100 pF. The proposed LDO regulator consumes a quiescent current of only \(10.5\,\upmu \hbox {A}\). The design is suitable for application with a current step edge time of 1 ns while maintaining \(\Delta V_{out}\) of 64 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Edge time of \(1.5\,\upmu \hbox {s}\) was used for measurements and compared to simulations due to measurement limitations.

References

  1. Leung, K. N., & Mok, P. K. (2003). A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation. IEEE Journal of Solid-State Circuits, 38(10), 1691–1702.

    Article  Google Scholar 

  2. Milliken, R. J., Silva-Martinez, J., & Sanchez-Sinencio, E. (2007). Full on-chip CMOS low-dropout voltage regulator. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(9), 1879–1890.

    Article  Google Scholar 

  3. Or, P. Y., & Leung, K. N. (2010). An output-capacitorless low-dropout regulator with direct voltage-spike detection. IEEE Journal of Solid-State Circuits, 45(2), 458–466.

    Article  Google Scholar 

  4. Guo, J., & Leung, K. N. (2010). A \(6-{\upmu }\) W chip-area-efficient output-capacitorless LDO in 90-nm CMOS technology. IEEE Journal of Solid-State Circuits, 45(9), 1896–1905.

    Article  Google Scholar 

  5. Ho, E. N., & Mok, P. K. (2010). A capacitor-less CMOS active feedback low-dropout regulator with slew-rate enhancement for portable on-chip application. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(2), 80–84.

    Article  Google Scholar 

  6. Hong, S. W., & Cho, G. H. (2016). High-gain wide-bandwidth capacitor-less low-dropout regulator (LDO) for mobile applications utilizing frequency response of multiple feedback loops. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(1), 46–57.

    Article  Google Scholar 

  7. Deleuran, A. N., Lindbjerg, N., Pedersen, M. K., Muntal, P. L., & Jørgensen, I. H. (2015). A capacitor-free, fast transient response linear voltage regulator in a 180nm CMOS. In Nordic Circuits and Systems Conference (NORCAS): NORCHIP & International Symposium on System-on-Chip (SoC), 2015 (pp. 1–4). IEEE.

  8. Kim, Y. I., & Lee, S. S. (2013). A capacitorless LDO regulator with fast feedback technique and low-quiescent current error amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(6), 326–330.

    Article  Google Scholar 

  9. Maity, A., & Patra, A. (2016). Tradeoffs aware design procedure for an adaptively biased capacitorless low dropout regulator using nested Miller compensation. IEEE Transactions on Power Electronics, 31(1), 369–380.

    Article  Google Scholar 

  10. Yosef-Hay, Y., Muntal, P. L., Larsen, D. Ø., & Jørgensen, I. H. (2016). Capacitor-free, low drop-out linear regulator in a 180 nm CMOS for hearing aids. In Nordic Circuits and Systems Conference (NORCAS), 2016 IEEE (pp. 1–5). IEEE.

  11. Ming, X., Li, Q., Zhou, Z. K., & Zhang, B. (2012). An ultrafast adaptively biased capacitorless LDO with dynamic charging control. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(1), 40–44.

    Article  Google Scholar 

  12. Chen, C. M., & Hung, C. C. (2013). Enhanced active feedback technique with dynamic compensation for low-dropout voltage regulator. Analog Integrated Circuits and Signal Processing, 75(1), 97–108.

    Article  Google Scholar 

  13. Lam, Y. H., & Ki, W. H. (2008). A 0.9 V 0.35 m adaptively biased CMOS LDO regulator with fast transient response. In Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International (pp. 442–626). IEEE.

  14. Banerjee, J., & Nandurkar, T. S. (2005). U.S. Patent No. 6,933,772. Washington, DC: U.S. Patent and Trademark Office.

  15. Jackum, T., Maderbacher, G., Pribyl, W., & Riederer, R. (2011). Fast transient response capacitor-free linear voltage regulator in 65nm CMOS. In IEEE International Symposium on Circuits and Systems (ISCAS), 2011 (pp. 905–908). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoni Yosef-Hay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yosef-Hay, Y., Larsen, D.Ø., Muntal, P.L. et al. Fully integrated, low drop-out linear voltage regulator in 180 nm CMOS. Analog Integr Circ Sig Process 92, 427–436 (2017). https://doi.org/10.1007/s10470-017-1012-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-1012-5

Keywords

Navigation