Skip to main content
Log in

A compact broadband stacked medium power amplifier in standard 65 nm CMOS technology

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This work presents the design and implementation of a fully integrated and compact broadband medium stacked power amplifier in standard 65 nm bulk CMOS. The amplifier topology utilizes three NMOS stack and three PMOS stack at the output to primarily increase the output impedance along with the output voltage swing. The load impedance is further optimized with a resistive feedback to the input active device which not only results in broadband operation but also helps in avoiding large and lossy broadband output matching network, resulting in a significant area reduction. Further, small interstage peaking inductors are employed to peak the parasitics capacitances that limit the broadband operation. The proposed amplifier works directly into a \(50\Omega \) load and shows a measured peak saturated output power from 13 to 8.5 dBm and a \(P_{1dB}\) of 7–4 dBm from 0.3 to 10 GHz. The drain and peak power added efficiency are 6.5 and 4.3 % under 4 V supply with DC power consumption of 160 mW. The measured small signal gain is around 9 dB with a gain ripple of ±1.5 dB till 7 GHz and 5.4 dB at 10 GHz, yielding a fractional bandwidth of 188 %. The measured load-pull −1 dB, −2 dB output power contours verify the optimum impedance around \(50\,\Omega \). The active chip area is only 0.44 mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Razavi, B. (2001). Prospects of CMOS technology for high-speed optical communication circuits. In 23rd Annual Technical Digest Gallium Arsenide Intergrated Circuit (GaAs IC) (pp. 3–8).

  2. Lu, C., Pham, A.-V., Shaw, M., & Saint, C. (2007). Linearization of CMOS broadband power amplifiers through combined multigated transistors and capacitance compensation. IEEE Transactions on Microwave Theory and Techniques, 55(11), 2320–2328.

    Article  Google Scholar 

  3. Liu, R.-C., Lin, C.-S., Deng, K.-L., & Wang, H. (2004). Design and analysis of DC-to-14-GHz and 22-GHz CMOS cascaded distributed amplifiers. IEEE Journal of Solid-State Circuits, 39(8), 1370–1374.

    Article  Google Scholar 

  4. Pei, S., Wang-Rong, Z., Hong-Yun, X., Dong-Yue, J., & Jun-Ning, G. (2008). An ultra-wideband darlington low noise amplifier design based on SiGe HBT. International Conference on Microwave and Milimeter Wave Technology, ICMMT, 3, 1372–1375.

    Google Scholar 

  5. Lin, K.-C., Chiou, H.-K., Chien, K.-H., Yang, T.-Y.-, Wu, P.-C.-, Ko, C.-L., et al. (2013). “A 4.2-mW 6-dB gain 5–65 GHz gate-pumped down-conversion mixer using darlington cell for 60-GHz CMOS receiver,”. IEEE Transactions on Microwave Theory and Techniques, 61(4), 1516–1522.

    Article  Google Scholar 

  6. Kobayashi, K. (2007). Linearized darlington cascode amplifier employing GaAs PHEMT and GaN HEMT technologies. IEEE Journal of Solid-State Circuits, 42(10), 2116–2122.

    Article  Google Scholar 

  7. Puyal, V., Konczykowska, A., Nouet, P., Bernard, S. Riet, M., Jorge, F., & Godin, J. (2005). A broadband active frequency doubler operating upto 120 GHz. In European Gallium Arsenide and Other Semiconductor Application Symposium (pp. 557–560).

  8. Maekawa, T., Amakawa, S., Ishihara, N., & Masu, K. (2009). Design of CMOS inverter-based output buffers adapting the Cherry-Hooper broadbanding technique. European Conference on Circuit Theory and Design, ECCTD, 2009, 511–514.

    Article  Google Scholar 

  9. Chiu, C.-Y., Ismail, M. (Aug 2005). A fully integrated multi-standard power amplifier in 0.18um CMOS for ieee 802.11a/b/g WLANs. In 48th Midwest Symposium on Circuits and Systems (vol. 2, pp. 1111–1114).

  10. Vasylyev, A., Weger, P., & Simburger, W. (2005). Ultra-broadband 20.5-31 GHz monolithically-integrated CMOS power amplifier. Electronics Letters, 41(23), 1281–1282.

    Article  Google Scholar 

  11. Pornpromlikit, S., Jeong, J., Presti, C., Scuderi, A., & Asbeck, P. (2010). A watt-level stacked—FET linear power amplifier in silicon-on-insulator CMOS. IEEE Transaction on Microwace Theory and Techniques., 58(1), 57–64.

    Article  Google Scholar 

  12. Chen, J.-H., Helmi, S., Azadegan, R., Aryanfar, F., & Mohammadi, S. (2013). A broadband stacked power amplifier in 45 nm CMOS SOI technology. IEEE Journal of Solid-State Circuits, 48(11), 2775–2784.

    Article  Google Scholar 

  13. Aoki, I., Kee, S., Magoon, R., Aparicio, R., Bohn, F., Zachan, J., et al. (2008). A fully-integrated quad-band GSM/GPRS CMOS power amplifier. IEEE Journal of Solid-State Circuits, 43(12), 2747–2758.

    Article  Google Scholar 

  14. Lee, T. H. (1998). The design of CMOS radio-frequency integrated circuits. Cambridge, NJ: Cambridge University Press.

    Google Scholar 

  15. Aoki, I., Kee, S. D., Rutledge, D. B., & Hajimiri, A. (2002). Fully integrated CMOS power amplifier design using the distributive active transformer architectures. IEEE Journal of Solid-State Circuits, 37(3), 371–383.

    Article  Google Scholar 

  16. Chen, J.-H. Helmi, S. R., Nobbe, D., & Mohammadi, S. (June 2013). A fully integrated high power wideband power amplifier in 025um CMOS SOS technology. In IEEE MTT-S International Microwave Symposium Digest.

  17. Dabag, H.-T., Hanafi, B., Golcuk, F., Agah, A., Buckwalter, J. F., & Asbeck, P. (2013). Analysis and design of stacked-FET milimeter-wave power amplifiers. IEEE Transaction on Microwave Theory and Techniques., 61(4), 1543–1556.

    Article  Google Scholar 

  18. Leuschner, S. Mueller, J.-E., & Klar, H. (2010). A 1.8 GHz wide-band stacked-cascode CMOS power amplifier for WCDMA application in 65-nm standard CMOS. In 2010 IEEE CICC.

  19. Fathi, M., Su, D. K., & Wooley, B. A. (2010). A stacked 6.5-GHz 29.6-dBm power amplifier in standard 65-nm CMOS. In 2010 IEEE CICC.

  20. Wang, T.-P., Ke, J.-H., & Chiang, C.-Y. (Nov 2011). A high-Psat high-PAE fully-integrated 5.8-GHz power amplifier in 0.18-um CMOS. In 2011 EDSSC.

Download references

Acknowledgments

This work is supported by DFG SPP under Grant number 1655.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Mumtaz Tarar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarar, M.M., Wei, MD., Khan, M.A. et al. A compact broadband stacked medium power amplifier in standard 65 nm CMOS technology. Analog Integr Circ Sig Process 89, 327–335 (2016). https://doi.org/10.1007/s10470-016-0819-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0819-9

Keywords

Navigation