Skip to main content
Log in

Frequency and displacement analysis of electrostatic cantilever-based MEMS sensor

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this work we present behavior level modeling to predict the frequency and displacement of electrostatic cantilever based microelectromechanical system sensor for mass detection. Linear time invariant (LTI) technique is used to study the linear and nonlinear behavior of the device. The shift in resonance frequency in damped and undamped medium is formulated by using the conception of dynamic mass and law of identity. First a complete analytical model is developed by coupling electrostatic force with the bending moment of cantilever to produce vertical actuation at a resonance frequency. Then displacement of the cantilever is correlated with piezoresistive mechanism for mass sensing. We assumed mass of blood cells as the external load on cantilever tip which results in shift in resonance frequency. Simulink tool is used to develop the LTI model that is based on electromechanical coupling of linear and nonlinear equations. The same device is then designed using COMSOL tool and FEM analysis is performed. For validation, the analytical results are compared with the FEM simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lim, J. H., Ratnam, M. M., Azid, I. A., & Mutharasu, D. (2010). Deflection measurement and determination of Young’s modulus of micro-cantilever using phase-shift Shadow Moiré method. Experimental Mechanics, 50(7), 1051–1060. doi:10.1007/s11340-009-9307-9.

    Article  Google Scholar 

  2. Beaulieu, L. Y., Godin, M., Laroche, O., Tabard-Cossa, V., & Grütter, P. (2007). A complete analysis of the laser beam deflection systems used in cantilever-based systems. Ultramicroscopy, 107(4–5), 422–430. doi:10.1016/j.ultramic.2006.11.001.

    Article  Google Scholar 

  3. Zhang, J., & Fu, Y. (2012). Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica, 47(7), 1649–1658. doi:10.1007/s11012-012-9545-2.

    Article  MathSciNet  MATH  Google Scholar 

  4. Rajabi, F., & Ramezani, S. (2013). A nonlinear microbeam model based on strain gradient elasticity theory. Acta Mechanica Solida Sinica, 26(1), 21–34. doi:10.1016/S0894-9166(13)60003-8.

    Article  MATH  Google Scholar 

  5. Mirza, A., Hamid, N. H., Khir, M. H. M., Dennis, J. O., Ashraf, K., Shoaib, M., et al. (2014). A CMOS-MEMS cantilever sensor for capnometric applications. IEICE Electronics Express, 11(9), 6. doi:10.1587/elex.11.20140113.

    Article  Google Scholar 

  6. Daniel, A. (2003). Analysis and preliminary characterization of a MEMS cantilever-type chemical sensor. Worcester: Worcester Polytechnic Institute.

    Google Scholar 

  7. Lishchynska, M., Cordero, N., & Slattery, O. (2005). Development of behavioural models for mechanically loaded microcantilevers and beams. Analog Integrated Circuits and Signal Processing, 44(2), 109–118. doi:10.1007/s10470-005-2590-1.

    Article  Google Scholar 

  8. He, X.-J., Wu, Q., Wang, Y., Song, M.-X., & Yin, J.-H. (2009). Numerical simulation and analysis of electrically actuated microbeam-based MEMS capacitive switch. Microsystem Technologies, 15(2), 301–307. doi:10.1007/s00542-008-0702-4.

    Article  Google Scholar 

  9. Sedighi, H. M., & Shirazi, K. H. (2012). A new approach to analytical solution of cantilever beam vibration with nonlinear boundary condition. Journal of Computational and Nonlinear Dynamics, 7(3), 034502. doi:10.1115/1.4005924.

    Article  Google Scholar 

  10. Younis, M. I., & Nayfeh, A. H. (2003). A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dynamics, 31(1), 91–117. doi:10.1023/A:1022103118330.

    Article  MathSciNet  MATH  Google Scholar 

  11. Rahaeifard, M., Ahmadian, M. T., & Firoozbakhsh, K. (2013). Size-dependent dynamic behavior of microcantilevers under suddenly applied DC voltage. Journal of Mechanical Engineering Science,. doi:10.1177/0954406213490376.

    Google Scholar 

  12. Voicu, R.-C., Gavrila, R., Obreja, A., Baracu, A.-M., Dinescu, A., & Müller, R. (2015). Design, microfabrication and analysis of polysilicon thin layers for MEMS vibrating structures. Analog Integrated Circuits and Signal Processing, 82(3), 611–620. doi:10.1007/s10470-014-0485-8.

    Article  Google Scholar 

  13. Caruntu, D. I., & Martinez, I. (2014). Reduced order model of parametric resonance of electrostatically actuated MEMS cantilever resonators. International Journal of Non-Linear Mechanics, 66, 28–32. doi:10.1016/j.ijnonlinmec.2014.02.007.

    Article  Google Scholar 

  14. Gowtham, V. (2011). Dynamic analysis of electrostatically excited micro cantilever beam. Rourkela: National Institute of Technology India.

    Google Scholar 

  15. Hawari, H. F., Wahab, Y., Azmi, M. T., Shakaff, A. Y. M., Hashim, U., & Johari, S. (2014). Design and Analysis of Various Microcantilever Shapes for MEMS Based Sensing. Journal of Physics: Conference Series, 495(1), 012045.

    Google Scholar 

  16. Shoaib, M., Hamid, N. H. B., Zain Ali, N. B. B., Jan, M. T., & Mirza, A. (2014). Study of nonlinear pull-in voltage effects in electrostatic cantilever-based MEMS sensors. In 5th International Conference on Intelligent and Advanced Systems (ICIAS), 2014 (pp. 1–5). doi:10.1109/ICIAS.2014.6869509.

  17. Dumas, N., Latorre, L., Mailly, F., & Nouet, P. (2010). Design of a smart CMOS high-voltage driver for electrostatic MEMS switches. In 2010 Symposium on Design Test Integration and Packaging of MEMS/MOEMS (DTIP), 5-7 May 2010 (pp. 44–47).

  18. Shoaib, M., Hisham, N., Basheer, N., & Tariq, M. (2015). Frequency analysis of electrostatic cantilever-based MEMS sensor. In Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2015 (pp. 1–6). doi:10.1109/DTIP.2015.7161013.

  19. Bao, M. (2005). Analysis and design principles of MEMS devices. Amsterdam: Elsevier.

    Google Scholar 

  20. Yang, B., Wang, X., Dai, B., & Liu, X. (2015). A new Z-axis resonant micro-accelerometer based on electrostatic stiffness. Sensors, 15(1), 687.

    Article  Google Scholar 

  21. Elshurafa, A. M., Khirallah, K., Tawfik, H. H., Emira, A., Abdel Aziz, A. K. S., & Sedky, S. M. (2011). Nonlinear Dynamics of Spring Softening and Hardening in Folded-MEMS Comb Drive Resonators. Journal of Microelectromechanical Systems, 20(4), 943–958. doi:10.1109/JMEMS.2011.2148162.

    Article  Google Scholar 

  22. Duc, T. C., Creemer, J. F., & Sarro, P. M. (2007). Piezoresistive cantilever beam for force sensing in two dimensions. IEEE Journal of Sensors, 7(1), 96–104. doi:10.1109/JSEN.2006.886992.

    Article  Google Scholar 

  23. Creemer, J. F., & French, P. J. (2004). The saturation current of silicon bipolar transistors at moderate stress levels and its relation to the energy-band structure. Journal of Applied Physics, 96(8), 4530–4538. doi:10.1063/1.1789269.

    Article  Google Scholar 

  24. Jaeger, R. C., Suhling, J. C., Carey, M. T., & Johnson, R. W. (1993). Off-axis sensor rosettes for measurement of the piezoresistive coefficients of silicon. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 16(8), 925–931. doi:10.1109/33.273694.

    Article  Google Scholar 

  25. Smith, C. S. (1954). Piezoresistance effect in germanium and silicon. Physical Review, 94(1), 42–49.

    Article  Google Scholar 

  26. Senturia, S. D. (2001). Microsystem design. New York: Kluwer Acedamic.

    Google Scholar 

  27. Gartner, L. P., & Hiatt, J. L. (2010). Concise histology: Peripheral blood. Philadelphia: Elsevier.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the GA funding scheme as well as the Department of Electrical & Electronic Engineering of Universiti Teknologi PETRONAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shoaib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoaib, M., Hisham, N., Basheer, N. et al. Frequency and displacement analysis of electrostatic cantilever-based MEMS sensor. Analog Integr Circ Sig Process 88, 1–11 (2016). https://doi.org/10.1007/s10470-016-0695-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0695-3

Keywords

Navigation