Skip to main content
Log in

A 0.1–4 GHz SDR receiver with reconfigurable 10–100 MHz signal bandwidth in 65 nm CMOS

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A 0.1–4 GHz software-defined radio (SDR) receiver with reconfigurable 10–100 MHz signal bandwidth is presented. The complete system design methodology, taking blocker effects into account, is provided. Fully differential Op-Amp with Miller feedback and feed-forward compensations is proposed to support wideband analog circuits with low power consumption. The stability and isolation of inverter-based trans-conductance amplifier are analyzed in details. The design approach of high linearity Tow-Thomas trans-impedance amplifier is presented to reject out-of-band blockers. To compensate for PVT variations, IIP2, frequency tuning, DC offset and IQ calibration are also integrated on-chip. The SDR receiver has been implemented in 65 nm CMOS, with 1.2/2.5 V power supply and a core chip area of 2.4 mm2. The receiver achieves S11 input matching below −10 dB and a NF of 3–8 dB across the 0.1–4 GHz range, and a maximum gain of 82–92 dB with a 70 dB dynamic range. Dissipated power spans from 30 to 90 mW across this entire frequency range. For LTE application with 20 MHz signal bandwidth and a LO frequency of 2.3 GHz, the receiver consumes 21 mA current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. 3GPP (2011). ETSI TS 136 101 V10.3.0 (2011-06). User Equipment (UE) radio transmission and reception: ETSI.

  2. D¨ottling, M., Mohr, W., & Osseiran, A. (2009). Radio technologies and concepts for IMT-advanced. New York: Wiley.

  3. Nakamura, T. (2009). LTE-advanced (3GPP release 10 and beyond)—RF aspects. 3GPP TSG-RAN-WG4.

  4. Ingels, M., Giannini, V., Borremans, J., Mandal, G., Debaillie, B., Van Wesemael, P., et al. A 5 mm2 40 nm LP CMOS 0.1-to-3 GHz multistandard transceiver. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, 7-11 Feb. 2010 2010 (pp. 458–459).

  5. Borremans, J., Mandal, G., Giannini, V., Sano, T., Ingels, M., Verbruggen, B., et al. A 40 nm CMOS highly linear 0.4-to-6 GHz receiver resilient to 0dBm out-of-band blockers. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, 20-24 Feb. 2011 2011 (pp. 62-64).

  6. Le, Y., Huailing, L., Congyin, S., Junhua, L., & Ru, H. A 2.3 mA 240-to-500 MHz 6th-order active-RC low-pass filter for ultra-wideband transceiver. In Solid State Circuits Conference (A-SSCC), 2010 IEEE Asian, 8-10 Nov. 2010 2010 (pp. 1–4).

  7. Poobuapheun, N., Wei-Hung, C., Boos, Z., & Niknejad, A. M. (2006). A 1.5 V 0.7-2.5 GHz CMOS quadrature demodulator for multi-band direct-conversion receivers. In Proceedings of the IEEE 2006 Custom Integrated Circuits Conference (IEEE Cat No. 06CH37753C), 4 pp.|CD-ROM.

  8. Kim, N., Aparin, V., & Larson, L. E. (2010). A resistively degenerated wideband passive mixer with low noise figure and high IIP2. Microwave Theory and Techniques, IEEE Transactions on, 58(4), 820–830. doi:10.1109/tmtt.2010.2042644.

    Article  MathSciNet  Google Scholar 

  9. Zhang, X., Yin, Y., Cao, M., Sun, Z., Fu, L., Xia, Z., et al. A 0.1–4 GHz receiver and 0.1–6 GHz transmitter with reconfigurable 10–100 MHz signal bandwidth in 65 nm CMOS. In Custom Integrated Circuits Conference (CICC), 2012 IEEE, 9-12 Sept. 2012 (pp. 1–4). doi:10.1109/cicc.2012.6330680.

  10. Giannini, V., Nuzzo, P., Soens, C., Vengattaramane, K., Ryckaert, J., Goffioul, M., et al. (2009). A 2-mm2 0.1–5 GHz software-defined radio receiver in 45-nm digital CMOS. IEEE Journal of Solid-State Circuits, 44(12), 3486–3498. doi:10.1109/jssc.2009.2032585.

    Article  Google Scholar 

  11. Geis, A., Ryckaert, J., Bos, L., Vandersteen, G., Rolain, Y., & Craninckx, J. (2010). A 0.5 mm2 power-scalable 0.5-3.8-GHz CMOS DT-SDR receiver with second-order RF band-pass sampler. IEEE Journal of Solid-State Circuits, 45(11), 2375–2387.

    Google Scholar 

  12. ETSI (2007). RF Transceiver Architecture for Cognitive Radio User Equipment.

  13. Kaczman, D., Shah, M., Alam, M., Rachedine, M., Cashen, D., Han, L., et al. (2009). A single-chip 10-band WCDMA/HSDPA 4-band GSM/EDGE SAW-less CMOS receiver with DigRF 3G interface and +90 dBm IIP2. IEEE Journal of Solid-State Circuits, 44(3), 718–739. doi:10.1109/jssc.2009.2013762.

    Article  Google Scholar 

  14. Yiping, F., Takemura, G., Kawaguchi, S., Itoh, N., & Kinget, P. R. (2011). Digitally assisted IIP2 calibration for CMOS direct-conversion receivers. IEEE Journal of Solid-State Circuits, 46(10), 2253–2267.

    Article  Google Scholar 

  15. Saad, R., Aristizabal-Ramirez, D. L., & Hoyos, S. (2012). Sensitivity analysis of continuous-time ΔΣ ADCs to out-of-band blockers in future SAW-less multi-standard wireless receivers. Circuits and Systems I: Regular Papers, IEEE Transactions on, 59(9), 1894–1905. doi:10.1109/tcsi.2012.2185310.

    Article  MathSciNet  Google Scholar 

  16. EICTA (2007). EICTA MBRAI 2.0.

  17. IEEE (2004). IEEE Std 802.16™-2004.

  18. IEEE (2003). IEEE Std 802.11 g-2003. The Institute of Electrical and Electronics Engineers, Inc.

  19. Giannini, V., Craninckx, J., D’Amico, S., & Baschirotto, A. (2007). Flexible baseband analog circuits for software-defined radio front-ends. IEEE Journal of Solid-State Circuits, 42(7), 1501–1512. doi:10.1109/jssc.2007.899103.

    Article  Google Scholar 

  20. Vasilopoulos, A., Vitzilaios, G., Theodoratos, G., & Papananos, Y. (2006). A low-power wideband reconfigurable integrated active-RC filter with 73 dB SFDR. IEEE Journal of Solid-State Circuits, 41(9), 1997–2008.

    Article  Google Scholar 

  21. Nam, I., Kim, B., & Lee, K. (2005). CMOS RF amplifier and mixer circuits utilizing complementary characteristics of parallel combined NMOS and PMOS devices. IEEE Transactions on Microwave Theory and Techniques, 53(5), 1662–1671. doi:10.1109/tmtt.2005.847059.

    Article  Google Scholar 

  22. Andrews, C., & Molnar, A. C. (2010). Implications of passive mixer transparency for impedance matching and noise figure in passive mixer-first receivers. Circuits and Systems I: Regular Papers, IEEE Transactions on, 57(12), 3092–3103.

    Article  MathSciNet  Google Scholar 

  23. Borremans, J., Wambacq, P., Soens, C., Rolain, Y., & Kuijk, M. (2008). Low-area active-feedback low-noise amplifier design in scaled digital CMOS. IEEE Journal of Solid-State Circuits, 43(11), 2422–2433. doi:10.1109/jssc.2008.2005434.

    Article  Google Scholar 

  24. Chang, T. Y., Chen, J., Rigge, L. A., & Lin, J. S. (2008). ESD-protected wideband CMOS LNAs using modified resistive feedback techniques with chip-on-board packaging. IEEE Transactions on Microwave Theory and Techniques, 56(8), 1817–1826. doi:10.1109/tmtt.2008.927301.

    Article  Google Scholar 

  25. Geis, A., Rolain, Y., Vandersteen, G., & Craninckx, J. A 0.045 mm2 0.1-6 GHz reconfigurable multi-band, multi-gain LNA for SDR. In Radio Frequency Integrated Circuits Symposium (RFIC), 2010 IEEE, 2325 May 2010 2010 (pp. 123–126).

  26. Mirzaei, A., Darabi, H., Leete, J. C., & Yuyu, C. (2010). Analysis and Optimization of direct-conversion receivers with 25 % duty-cycle current-driven passive mixers. Circuits and Systems I: Regular Papers, IEEE Transactions on, 57(9), 2353–2366.

    Article  Google Scholar 

  27. D’Amico, S., Giannini, V., & Baschirotto, A. (2006). A 4th-order active-Gm-RC reconfigurable (UMTS/WLAN) filter. IEEE Journal of Solid-State Circuits, 41(7), 1630–1637. doi:10.1109/jssc.2006.873676.

    Article  Google Scholar 

  28. Seyeob, K., Minsu, J., Yanggyun, K., Bonkee, K., Taeju, L., Kangho, L., et al. (2008). A complex band-pass filter for low-IF conversion DAB/T-DMB tuner with I/Q mismatch calibration. IEEE Asian Solid-State Circuits Conference, 2008, 473–476. doi:10.1109/asscc.2008.4708830.

    Google Scholar 

  29. Kitsunezuka, M., Kodama, H., Oshima, N., Kunihiro, K., Maeda, T., & Fukaishi, M. A 30 MHz-2.4 GHz CMOS receiver with integrated RF filter and dynamic-range-scalable energy detector for cognitive radio. In Radio Frequency Integrated Circuits Symposium (RFIC), 2011 IEEE, 57 June 2011 2011 (pp. 1–4).

  30. Borremans, J., Mandal, G., Giannini, V., Sano, T., Ingels, M., Verbruggen, B., et al. (2011). A 40 nm CMOS highly linear 0.4-to-6 GHz receiver resilient to 0dBm out-of-band blockers. 2011 IEEE International Solid-State Circuits Conference (ISSCC 2011), 62–64|539. doi:10.1109/isscc.2011.5746220.

Download references

Acknowledgments

This work was supported in part by the National Science and Technology Major Projects of China under Grant 2012ZX03004007 and in part by the National Natural Science Foundation of China under Grant 61020106006, 61076029, 61222405, JCYJ20120616142625998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Chi, B., Cao, M. et al. A 0.1–4 GHz SDR receiver with reconfigurable 10–100 MHz signal bandwidth in 65 nm CMOS. Analog Integr Circ Sig Process 77, 567–582 (2013). https://doi.org/10.1007/s10470-013-0168-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0168-x

Keywords

Navigation