Skip to main content
Log in

A self-duty-cycled 7.2–8.5 GHz IR-UWB receiver for low power and low data rate applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A self-duty-cycled non-coherent impulse radio-ultra wideband receiver targeted at low-power and low-data-rate applications is presented. The receiver is implemented in a 130 nm CMOS technology and works in the 7.2–8.5 GHz UWB band, which covers the IEEE 802.15.4a and 802.15.6 mandatories high-band channels. The receiver architecture is based on a non-coherent RF front-end (high gain LNA and pulse detector) followed by a synchronizer block (clock and data recovery or CDR function and window generation block), which enables to shut down the power-hungry LNA between pulses to strongly reduce the receiver power consumption. The main functions of the receiver, i.e. the RF front-end and the CDR block, were measured stand-alone. A maximum gain of 40 dB at 7.2 GHz is measured for the LNA. The RF front-end achieves a very low turn-on time (<1 ns) and an average sensitivity of −92 dBm for a 10−3 BER at a 1 Mbps data rate. A root-mean-square (RMS) jitter of 7.9 ns is measured for the CDR for a power consumption of 54 µW. Simulation results of the fully integrated self-duty-cycled 7.2–8.5 GHz IR-UWB receiver (that includes the measured main functions) confirm the expected performances. The synchronizer block consumes only 125 µW and the power consumption of the whole receiver is 1.8 mW for a 3% power duty-cycle (on-window of 30 ns).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Chandrakasan, A. P., Lee, F. S., Wentzloff, D. D., Sze, V., Ginsburg, B. P., Mercier, P. P., et al. (2009). Low-power impulse UWB architectures and circuits. Proceedings of the IEEE, 97(2), 332–352.

    Article  Google Scholar 

  2. Crepaldi, M., Li, C., Dronson, K., Fernandes, J., & Kinget, P. (2010). An ultra-low-power interference-robust IR-UWB transceiver chipset using self-synchronizing OOK modulation. IEEE Journal of Solid-State Circuits, 46(10), 2284–2299.

    Article  Google Scholar 

  3. Lee, F. S., & Chandrakasan, A. P. (2007). A 2.5 nJ/bit 0.65 V pulsed UWB receiver in 90 nm CMOS. IEEE Journal of Solid-State Circuits, 42(12), 2851–2859.

    Article  Google Scholar 

  4. Dokania, R., Wang, X., Tallur, S., & Apsel, A. (2010). An ultralow-power dual-band UWB impulse radio. IEEE Transactions on Circuits and Systems II, 57(7), 541–545.

    Article  Google Scholar 

  5. Gambini, S., Crossley, J., Alon, E., & Rabaey, J. M. (2012). A fully integrated, 290 pJ/bit UWB dual-mode transceiver for cm-range wireless interconnects. IEEE Journal of Solid-State Circuits, 47(3), 586–598.

    Article  Google Scholar 

  6. Vigraham, B., & Kinget, P. R. (2014). A self-duty-cycled and synchronized UWB pulse-radio receiver SoC with automatic threshold-recovery based demodulation. IEEE Journal of Solid-State Circuits, 49(3), 581–594.

    Article  Google Scholar 

  7. Yuce, M. R., Keong, H. C., & Chae, M. S. (2009). Wideband communication for implantable and wearable systems. IEEE Transactions on Microwave Theory and Techniques, 57(10), 2597–2604.

    Article  Google Scholar 

  8. Dokania, R. K., Wang, X. Y., Tallur, S. G., & Apsel, A. B. (2011). A low power impulse radio design for body area networks. IEEE Transactions on Circuits and Systems I, 58(7), 1458–1469.

    Article  MathSciNet  Google Scholar 

  9. Solda, S., Caruso, M., Bevilacqua, A., Gerosa, A., Vogrig, D., & Neviani, A. (2011). A 5 Mb/s UWB-IR transceiver front-end for wireless sensor networks in 0.13 µm CMOS. IEEE Journal of Solid-State Circuits, 46(7), 1636–1647.

    Article  Google Scholar 

  10. Wang, X., Yu, Y., Busze, B., Pflug, H., Young, A., Huang, X., Zhou, C., Konijnenburg, M., Philips, K., & De Groot, H. (2012). A meter-range UWB transceiver chipset for around-the-head audio streaming. In IEEE International Solid-State Circuits Conference (pp. 450–452).

  11. Wang, X. Y., & Dokania, R. (2013). A crystal-less self-synchronized bit-level duty-cycled IR-UWB transceiver system. IEEE Transactions on Circuits and Systems I, 60(9), 2488–2501.

    Article  MathSciNet  Google Scholar 

  12. IEEE standard (2007). Specific requirement Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs). In IEEE Std 802.15.4a-2007 (Amendment to IEEE Std 802.15.4-2006).

  13. IEEE Standard for Local and metropolitan area networks—Part 15.6: Wireless body area networks, in IEEE Std 802.15.6-2012, 2012.

  14. Benamor, I., Tall, N., Dehaese, N., Gaubert, J., Vauche R., & Sparrow, O.R. (2015). A fully differential 7.2–8.5 GHz LNA for a self-synchronized and duty-cycled UWB OOK receiver. In IEEE International Conference on Ubiquitous Wireless Broadband (pp. 1–5).

  15. Sparrow, O. R., Vauché, R., Dehaese, N., Bourdel, S., Gaubert, J., Ben Amor, I., et al. (2014). High rate UWB CMOS transceiver chipset for WBAN and biomedical applications. Journal of Analog Integrated Circuits and Signal Processing (AICSP), 81(1), 215–227.

    Article  Google Scholar 

  16. Battista, M., Gaubert, J., Egels, M., Bourdel, S., & Barthélémy, H. (2008). High voltage gain CMOS LNA for 6–8.5 GHz UWB receivers. IEEE Transactions on Circuits And Systems, 55(8), 713–717.

    Article  Google Scholar 

  17. Benamor, I., Dehaese, N., Gaubert J., & Bourdel, S. (2014). Fast turn on/off low noise amplifier for duty cycled ultra-wideband impulse radio. In IEEE International Conference on Ultra-Wideband (pp. 331–336).

  18. Tall, N., Dehaese, N., Bourdel, S., Fourquin, O., Vauché, R., & Gaubert, J. (2012). Low-power clock and data recovery circuit for IR-UWB receiver power management. In IEEE International Multi-Conference on Systems, Circuits and Devices (SSD) (pp. 1–6).

  19. Razavi, B. (2002). Challenges in the design of high-speed clock and data recovery circuits. IEEE Communications Magazine, 40(8), 94–101.

    Article  Google Scholar 

  20. Van Helleputte, N., & Gielen, G. (2009). A 70 pJ/Pulse analog front-end in 130 nm CMOS for UWB impulse radio receivers. IEEE Journal of Solid-State Circuits, 44(7), 1862–1871.

    Article  Google Scholar 

  21. Tan, Y.S., Yeo, K.S., Boon, C.C., & Do, M.A. (2011). Design of a hysteresis lock detector for dual-loops clock and data recovery circuit. In International Conference on Electron Devices and Solid-State Circuits (EDSSC) (pp. 1–2).

  22. Bui, H.T. (2008). High speed CDR using a novel binary phase detector with probable-lock-detection. In IEEE International Conference on Electronics, Circuits and Systems (ICECS) (pp. 1006–1009).

  23. Revision of part 15 of the commission’s rules regarding ultra-wide-band transmission systems report and order, FCC, 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Dehaese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehaese, N., Ben Amor, I., Tall, N. et al. A self-duty-cycled 7.2–8.5 GHz IR-UWB receiver for low power and low data rate applications. Analog Integr Circ Sig Process 92, 39–53 (2017). https://doi.org/10.1007/s10470-017-0985-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-0985-4

Keywords

Navigation