Skip to main content
Log in

BMP10-mediated ALK1 signaling is continuously required for vascular development and maintenance

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal-dominant vascular disorder characterized by development of high-flow arteriovenous malformations (AVMs) that can lead to stroke or high-output heart failure. HHT2 is caused by heterozygous mutations in ACVRL1, which encodes an endothelial cell bone morphogenetic protein (BMP) receptor, ALK1. BMP9 and BMP10 are established ALK1 ligands. However, the unique and overlapping roles of these ligands remain poorly understood. To define the physiologically relevant ALK1 ligand(s) required for vascular development and maintenance, we generated zebrafish harboring mutations in bmp9 and duplicate BMP10 paralogs, bmp10 and bmp10-like. bmp9 mutants survive to adulthood with no overt phenotype. In contrast, combined loss of bmp10 and bmp10-like results in embryonic lethal cranial AVMs indistinguishable from acvrl1 mutants. However, despite embryonic functional redundancy of bmp10 and bmp10-like, bmp10 encodes the only required Alk1 ligand in the juvenile-to-adult period. bmp10 mutants exhibit blood vessel abnormalities in anterior skin and liver, heart dysmorphology, and premature death, and vascular defects correlate with increased cardiac output. Together, our findings support a unique role for Bmp10 as a non-redundant Alk1 ligand required to maintain the post-embryonic vasculature and establish zebrafish bmp10 mutants as a model for AVM-associated high-output heart failure, which is an increasingly recognized complication of severe liver involvement in HHT2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roman BL, Hinck AP (2017) ALK1 signaling in development and disease: new paradigms. Cell Mol Life Sci 74:4539–4560. https://doi.org/10.1007/s00018-017-2636-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Droege F, Thangavelu K, Stuck BA, Stang A, Lang S, Geisthoff U (2018) Life expectancy and comorbidities in patients with hereditary hemorrhagic telangiectasia. Vasc Med. https://doi.org/10.1177/1358863x18767761

    Article  PubMed  Google Scholar 

  3. Zarrabeitia R, Farinas-Alvarez C, Santibanez M, Senaris B, Fontalba A, Botella LM, Parra JA (2017) Quality of life in patients with hereditary haemorrhagic telangiectasia (HHT). Health Qual Life Outcomes 15:19. https://doi.org/10.1186/s12955-017-0586-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Gussem EM, Edwards CP, Hosman AE, Westermann CJ, Snijder RJ, Faughnan ME, Mager JJ (2016) Life expextancy of parents with hereditary haemorrhagic telangiectasia. Orphanet J Rare Dis 11:46. https://doi.org/10.1186/s13023-016-0427-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Faughnan ME, Palda VA, Garcia-Tsao G, Geisthoff UW, McDonald J, Proctor DD, Spears J, Brown DH, Buscarini E, Chesnutt MS, Cottin V, Ganguly A, Gossage JR, Guttmacher AE, Hyland RH, Kennedy SJ, Korzenik J, Mager JJ, Ozanne AP, Piccirillo JF, Picus D, Plauchu H, Porteous ME, Pyeritz RE, Ross DA, Sabba C, Swanson K, Terry P, Wallace MC, Westermann CJ, White RI, Young LH, Zarrabeitia R, Group HHTFI-GW (2011) International guidelines for the diagnosis and management of hereditary haemorrhagic telangiectasia. J Med Genet 48:73–87. https://doi.org/10.1136/jmg.2009.069013

    Article  CAS  PubMed  Google Scholar 

  6. Halderman AA, Ryan MW, Marple BF, Sindwani R, Reh DD, Poetker DM (2018) Bevacizumab for epistaxis in hereditary hemorrhagic telangiectasia: an evidence-based review. Am J Rhinol Allergy. https://doi.org/10.1177/1945892418768588

    Article  PubMed  Google Scholar 

  7. Mitchell A, Adams LA, MacQuillan G, Tibballs J, van den Driesen R, Delriviere L (2008) Bevacizumab reverses need for liver transplantation in hereditary hemorrhagic telangiectasia. Liver Transpl 14:210–213. https://doi.org/10.1002/lt.21417

    Article  PubMed  Google Scholar 

  8. Dupuis-Girod S, Ginon I, Saurin JC, Marion D, Guillot E, Decullier E, Roux A, Carette MF, Gilbert-Dussardier B, Hatron PY, Lacombe P, Lorcerie B, Riviere S, Corre R, Giraud S, Bailly S, Paintaud G, Ternant D, Valette PJ, Plauchu H, Faure F (2012) Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. JAMA 307:948–955. https://doi.org/10.1001/jama.2012.250

    Article  CAS  PubMed  Google Scholar 

  9. Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13:616–630. https://doi.org/10.1038/nrm3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S, Mitchell G, Drouin E, Westermann CJ, Marchuk DA (2004) A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363:852–859

    Article  CAS  PubMed  Google Scholar 

  11. Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M, Pericak-Vance MA, Diamond A, Guttmacher AE, Jackson CE, Attisano L, Kucherlapati R, Porteous ME, Marchuk DA (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13:189–195

    Article  CAS  PubMed  Google Scholar 

  12. McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA, Markel DS, McKinnon WC, Murrell J, McCormick MK, Pericak-Vance MA, Heutnik P, Oostra BA, Haitjema T, Westerman CJJ, Porteous ME, Guttmacher AE, Letarte M, Marchuk DA (1994) Endoglin, a TGF-b binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351

    Article  CAS  PubMed  Google Scholar 

  13. McDonald J, Wooderchak-Donahue W, VanSant Webb C, Whitehead K, Stevenson DA, Bayrak-Toydemir P (2015) Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era. Front Genet 6:1. https://doi.org/10.3389/fgene.2015.00001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Castonguay R, Werner ED, Matthews RG, Presman E, Mulivor AW, Solban N, Sako D, Pearsall RS, Underwood KW, Seehra J, Kumar R, Grinberg AV (2011) Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J Biol Chem 286:30034–30046. https://doi.org/10.1074/jbc.M111.260133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brown MA, Zhao Q, Baker KA, Naik C, Chen C, Pukac L, Singh M, Tsareva T, Parice Y, Mahoney A, Roschke V, Sanyal I, Choe S (2005) Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem 280:25111–25118

    Article  CAS  PubMed  Google Scholar 

  16. Mitchell D, Pobre EG, Mulivor AW, Grinberg AV, Castonguay R, Monnell TE, Solban N, Ucran JA, Pearsall RS, Underwood KW, Seehra J, Kumar R (2010) ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol Cancer Ther 9:379–388. https://doi.org/10.1158/1535-7163.MCT-09-0650

    Article  CAS  PubMed  Google Scholar 

  17. Townson SA, Martinez-Hackert E, Greppi C, Lowden P, Sako D, Liu J, Ucran JA, Liharska K, Underwood KW, Seehra J, Kumar R, Grinberg AV (2012) Specificity and structure of a high affinity activin receptor-like kinase 1 (ALK1) signaling complex. J Biol Chem 287:27313–27325. https://doi.org/10.1074/jbc.M112.377960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109:1953–1961

    Article  CAS  PubMed  Google Scholar 

  19. Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, Lowik CW, ten Dijke P (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120:964–972

    Article  CAS  PubMed  Google Scholar 

  20. Miller AF, Harvey SA, Thies RS, Olson MS (2000) Bone morphogenetic protein-9. An autocrine/paracrine cytokine in the liver. J Biol Chem 275:17937–17945

    Article  CAS  PubMed  Google Scholar 

  21. Bidart M, Ricard N, Levet S, Samson M, Mallet C, David L, Subileau M, Tillet E, Feige JJ, Bailly S (2012) BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cell Mol Life Sci 69:313–324. https://doi.org/10.1007/s00018-011-0751-1

    Article  CAS  PubMed  Google Scholar 

  22. Tillet E, Ouarne M, Desroches-Castan A, Mallet C, Subileau M, Didier R, Lioutsko A, Belthier G, Feige JJ, Bailly S (2018) A heterodimer formed by bone morphogenetic protein 9 (BMP9) and BMP10 provides most BMP biological activity in plasma. J Biol Chem 293:10963–10974. https://doi.org/10.1074/jbc.RA118.002968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen H, Brady Ridgway J, Sai T, Lai J, Warming S, Chen H, Roose-Girma M, Zhang G, Shou W, Yan M (2013) Context-dependent signaling defines roles of BMP9 and BMP10 in embryonic and postnatal development. Proc Natl Acad Sci USA 110:11887–11892. https://doi.org/10.1073/pnas.1306074110

    Article  PubMed  PubMed Central  Google Scholar 

  24. Breitkopf-Heinlein K, Meyer C, Konig C, Gaitantzi H, Addante A, Thomas M, Wiercinska E, Cai C, Li Q, Wan F, Hellerbrand C, Valous NA, Hahnel M, Ehlting C, Bode JG, Muller-Bohl S, Klingmuller U, Altenoder J, Ilkavets I, Goumans MJ, Hawinkels LJ, Lee SJ, Wieland M, Mogler C, Ebert MP, Herrera B, Augustin H, Sanchez A, Dooley S, Ten Dijke P (2017) BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut 66:939–954. https://doi.org/10.1136/gutjnl-2016-313314

    Article  CAS  PubMed  Google Scholar 

  25. Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, Chen Z, Yang Z, Schneider MD, Chien KR, Conway SJ, Yoder MC, Haneline LS, Franco D, Shou W (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–2231. https://doi.org/10.1242/dev.01094

    Article  CAS  PubMed  Google Scholar 

  26. Neuhaus H, Rosen V, Thies RS (1999) Heart specific expression of mouse BMP-10 a novel member of the TGF-beta superfamily. Mech Dev 80:181–184

    Article  CAS  PubMed  Google Scholar 

  27. Ricard N, Ciais D, Levet S, Subileau M, Mallet C, Zimmers TA, Lee SJ, Bidart M, Feige JJ, Bailly S (2012) BMP9 and BMP10 are critical for postnatal retinal vascular remodeling. Blood 119:6162–6171. https://doi.org/10.1182/blood-2012-01-407593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kienast Y, Jucknischke U, Scheiblich S, Thier M, de Wouters M, Haas A, Lehmann C, Brand V, Bernicke D, Honold K, Lorenz S (2016) Rapid activation of bone morphogenic protein 9 by receptor-mediated displacement of pro-domains. J Biol Chem 291:3395–3410. https://doi.org/10.1074/jbc.M115.680009

    Article  CAS  PubMed  Google Scholar 

  29. van Baardewijk LJ, van der Ende J, Lissenberg-Thunnissen S, Romijn LM, Hawinkels LJ, Sier CF, Schipper IB (2013) Circulating bone morphogenetic protein levels and delayed fracture healing. Int Orthop 37:523–527. https://doi.org/10.1007/s00264-012-1750-z

    Article  PubMed  Google Scholar 

  30. Ola R, Dubrac A, Han J, Zhang F, Fang JS, Larrivee B, Lee M, Urarte AA, Kraehling JR, Genet G, Hirschi KK, Sessa WC, Canals FV, Graupera M, Yan M, Young LH, Oh PS, Eichmann A (2016) PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia. Nat Commun 7:13650. https://doi.org/10.1038/ncomms13650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ruiz S, Zhao H, Chandakkar P, Chatterjee PK, Papoin J, Blanc L, Metz CN, Campagne F, Marambaud P (2016) A mouse model of hereditary hemorrhagic telangiectasia generated by transmammary-delivered immunoblocking of BMP9 and BMP10. Sci Rep 5:37366. https://doi.org/10.1038/srep37366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baeyens N, Larrivee B, Ola R, Hayward-Piatkowskyi B, Dubrac A, Huang B, Ross TD, Coon BG, Min E, Tsarfati M, Tong H, Eichmann A, Schwartz MA (2016) Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J Cell Biol 214:807–816. https://doi.org/10.1083/jcb.201603106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC, Garrity DM, Moon RT, Fishman MC, Lechleider RJ, Weinstein BM (2002) Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129:3009–3019

    CAS  PubMed  Google Scholar 

  34. Corti P, Young S, Chen CY, Patrick MJ, Rochon ER, Pekkan K, Roman BL (2011) Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138:1573–1582. https://doi.org/10.1242/dev.060467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laux DW, Young S, Donovan JP, Mansfield CJ, Upton PD, Roman BL (2013) Circulating Bmp10 acts through endothelial Alk1 to mediate flow-dependent arterial quiescence. Development 140:3403–3412. https://doi.org/10.1242/dev.095307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Westerfield M (1995) The zebrafish book. University of Oregon Press, Eugene

    Google Scholar 

  37. Choi J, Dong L, Ahn J, Dao D, Hammerschmidt M, Chen JN (2007) FoxH1 negatively modulates flk1 gene expression and vascular formation in zebrafish. Dev Biol 304:735–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Whitesell TR, Kennedy RM, Carter AD, Rollins EL, Georgijevic S, Santoro MM, Childs SJ (2014) An alpha-smooth muscle actin (acta2/alphasma) zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells. PLoS ONE 9:e90590. https://doi.org/10.1371/journal.pone.0090590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bussmann J, Bos FL, Urasaki A, Kawakami K, Duckers HJ, Schulte-Merker S (2010) Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk. Development 137:2653–2657. https://doi.org/10.1242/dev.048207

    Article  CAS  PubMed  Google Scholar 

  40. Gordon K, Schulte D, Brice G, Simpson MA, Roukens MG, van Impel A, Connell F, Kalidas K, Jeffery S, Mortimer PS, Mansour S, Schulte-Merker S, Ostergaard P (2013) Mutation in vascular endothelial growth factor-C, a ligand for vascular endothelial growth factor receptor-3, is associated with autosomal dominant milroy-like primary lymphedema. Circ Res 112:956–960. https://doi.org/10.1161/CIRCRESAHA.113.300350

    Article  CAS  PubMed  Google Scholar 

  41. Lin YF, Swinburne I, Yelon D (2012) Multiple influences of blood flow on cardiomyocyte hypertrophy in the embryonic zebrafish heart. Dev Biol 362:242–253. https://doi.org/10.1016/j.ydbio.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  42. Huang CJ, Tu CT, Hsiao CD, Hsieh FJ, Tsai HJ (2003) Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev Dyn 228:30–40. https://doi.org/10.1002/dvdy.10356

    Article  CAS  PubMed  Google Scholar 

  43. Rottbauer W, Saurin AJ, Lickert H, Shen X, Burns CG, Wo ZG, Kemler R, Kingston R, Wu C, Fishman M (2002) Reptin and pontin antagonistically regulate heart growth in zebrafish embryos. Cell 111:661–672

    Article  CAS  PubMed  Google Scholar 

  44. Kettleborough RN, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, Sealy I, White RJ, Herd C, Nijman IJ, Fenyes F, Mehroke S, Scahill C, Gibbons R, Wali N, Carruthers S, Hall A, Yen J, Cuppen E, Stemple DL (2013) A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496:494–497. https://doi.org/10.1038/nature11992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cade L, Reyon D, Hwang WY, Tsai SQ, Patel S, Khayter C, Joung JK, Sander JD, Peterson RT, Yeh JR (2012) Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res 40:8001–8010. https://doi.org/10.1093/nar/gks518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, Roux AF, Smith T, Antonarakis SE, Taschner PE (2016) HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat 37:564–569. https://doi.org/10.1002/humu.22981

    Article  CAS  Google Scholar 

  47. Isogai S, Horiguchi M, Weinstein BM (2001) The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol 230:278–301

    Article  CAS  PubMed  Google Scholar 

  48. Wang LW, Huttner IG, Santiago CF, Kesteven SH, Yu ZY, Feneley MP, Fatkin D (2017) Standardized echocardiographic assessment of cardiac function in normal adult zebrafish and heart disease models. Dis Model Mech 10:63–76. https://doi.org/10.1242/dmm.026989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Spanjaard B, Hu B, Mitic N, Olivares-Chauvet P, Janjuha S, Ninov N, Junker JP (2018) Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat Biotechnol 36:469–473. https://doi.org/10.1038/nbt.4124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R (2019) Comprehensive integration of single-cell data. Cell 177(1888–1902):e1821. https://doi.org/10.1016/j.cell.2019.05.031

    Article  CAS  Google Scholar 

  51. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420. https://doi.org/10.1038/nbt.4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hafemeister C, Satija R (2019) Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. bioRxiv. https://doi.org/10.1101/576827

    Article  Google Scholar 

  53. Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, Ginhoux F, Newell EW (2018) Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. https://doi.org/10.1038/nbt.4314

    Article  PubMed  Google Scholar 

  54. Dowle M Srinivasan A (2019) data.table: Extension of data.frame. R packaged version 1.12.2. https://CRAN.R-project.org/package=data.table

  55. Wickham H (2016) ggplot2 Elegant Graphics for Data Analysis. Springer Nature, New York

    Google Scholar 

  56. Susan-Resiga D, Essalmani R, Hamelin J, Asselin MC, Benjannet S, Chamberland A, Day R, Szumska D, Constam D, Bhattacharya S, Prat A, Seidah NG (2011) Furin is the major processing enzyme of the cardiac-specific growth factor bone morphogenetic protein 10. J Biol Chem 286:22785–22794. https://doi.org/10.1074/jbc.M111.233577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Constam DB (2014) Regulation of TGFbeta and related signals by precursor processing. Semin Cell Dev Biol 32:85–97. https://doi.org/10.1016/j.semcdb.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  58. Rochon ER, Menon PG, Roman BL (2016) Alk1 controls arterial endothelial cell migration in lumenized vessels. Development 143:2593–2602. https://doi.org/10.1242/dev.135392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Gunther S, Fukuda N, Kikhi K, Boezio GLM, Takacs CM, Lai SL, Fukuda R, Gerri C, Giraldez AJ, Stainier DYR (2019) Genetic compensation triggered by mutant mRNA degradation. Nature 568:193–197. https://doi.org/10.1038/s41586-019-1064-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Corti P, Xue J, Tejero J, Wajih N, Sun M, Stolz DB, Tsang M, Kim-Shapiro DB, Gladwin MT (2016) Globin X is a six-coordinate globin that reduces nitrite to nitric oxide in fish red blood cells. Proc Natl Acad Sci USA 113:8538–8543. https://doi.org/10.1073/pnas.1522670113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang W, Chen H, Wang Y, Yong W, Zhu W, Liu Y, Wagner GR, Payne RM, Field LJ, Xin H, Cai CL, Shou W (2011) Tbx20 transcription factor is a downstream mediator for bone morphogenetic protein-10 in regulating cardiac ventricular wall development and function. J Biol Chem 286:36820–36829. https://doi.org/10.1074/jbc.M111.279679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huang J, Elicker J, Bowens N, Liu X, Cheng L, Cappola TP, Zhu X, Parmacek MS (2012) Myocardin regulates BMP10 expression and is required for heart development. J Clin Invest 122:3678–3691. https://doi.org/10.1172/JCI63635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou Y, Cashman TJ, Nevis KR, Obregon P, Carney SA, Liu Y, Gu A, Mosimann C, Sondalle S, Peterson RE, Heideman W, Burns CE, Burns CG (2011) Latent TGF-beta binding protein 3 identifies a second heart field in zebrafish. Nature 474:645–648. https://doi.org/10.1038/nature10094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang W, Chen H, Qu X, Chang CP, Shou W (2013) Molecular mechanism of ventricular trabeculation/compaction and the pathogenesis of the left ventricular noncompaction cardiomyopathy (LVNC). Am J Med Genet C Semin Med Genet 163C:144–156. https://doi.org/10.1002/ajmg.c.31369

    Article  PubMed  Google Scholar 

  65. Chen H, Yong W, Ren S, Shen W, He Y, Cox KA, Zhu W, Li W, Soonpaa M, Payne RM, Franco D, Field LJ, Rosen V, Wang Y, Shou W (2006) Overexpression of bone morphogenetic protein 10 in myocardium disrupts cardiac postnatal hypertrophic growth. J Biol Chem 281:27481–27491. https://doi.org/10.1074/jbc.M604818200

    Article  CAS  PubMed  Google Scholar 

  66. Peshkovsky C, Totong R, Yelon D (2011) Dependence of cardiac trabeculation on neuregulin signaling and blood flow in zebrafish. Dev Dyn 240:446–456. https://doi.org/10.1002/dvdy.22526

    Article  PubMed  Google Scholar 

  67. Liu J, Bressan M, Hassel D, Huisken J, Staudt D, Kikuchi K, Poss KD, Mikawa T, Stainier DY (2010) A dual role for ErbB2 signaling in cardiac trabeculation. Development 137:3867–3875. https://doi.org/10.1242/dev.053736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shovlin CL, Guttmacher AE, Buscarini E, Faughnan ME, Hyland RH, Westermann CJ, Kjeldsen AD, Plauchu H (2000) Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am J Med Genet 91:66–67

    Article  CAS  PubMed  Google Scholar 

  69. Snellings DA, Gallione CJ, Clark DS, Vozoris NT, Faughnan ME, Marchuk DA (2019) Somatic Mutations in Vascular Malformations of Hereditary Hemorrhagic Telangiectasia Result in Bi-allelic Loss of ENG or ACVRL1. Am J Hum Genet. https://doi.org/10.1016/j.ajhg.2019.09.010

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bussmann J, Wolfe SA, Siekmann AF (2011) Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling. Development 138:1717–1726. https://doi.org/10.1242/dev.059881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hasan SS, Tsaryk R, Lange M, Wisniewski L, Moore JC, Lawson ND, Wojciechowska K, Schnittler H, Siekmann AF (2017) Endothelial Notch signalling limits angiogenesis via control of artery formation. Nat Cell Biol 19:928–940. https://doi.org/10.1038/ncb3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Weijts B, Gutierrez E, Saikin SK, Ablooglu AJ, Traver D, Groisman A, Tkachenko E (2018) Blood flow-induced Notch activation and endothelial migration enable vascular remodeling in zebrafish embryos. Nat Commun 9:5314. https://doi.org/10.1038/s41467-018-07732-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Harrison MR, Bussmann J, Huang Y, Zhao L, Osorio A, Burns CG, Burns CE, Sucov HM, Siekmann AF, Lien CL (2015) Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish. Dev Cell 33:442–454. https://doi.org/10.1016/j.devcel.2015.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu C, Hasan SS, Schmidt I, Rocha SF, Pitulescu ME, Bussmann J, Meyen D, Raz E, Adams RH, Siekmann AF (2014) Arteries are formed by vein-derived endothelial tip cells. Nat Commun 5:5758. https://doi.org/10.1038/ncomms6758

    Article  CAS  PubMed  Google Scholar 

  75. Rasmussen JP, Vo NT, Sagasti A (2018) Fish scales dictate the pattern of adult skin innervation and vascularization. Dev Cell 46(344–359):e344. https://doi.org/10.1016/j.devcel.2018.06.019

    Article  CAS  Google Scholar 

  76. Korzh S, Pan X, Garcia-Lecea M, Winata CL, Wohland T, Korzh V, Gong Z (2008) Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish. BMC Dev Biol 8:84. https://doi.org/10.1186/1471-213X-8-84

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yao Y, Lin J, Yang P, Chen Q, Chu X, Gao C, Hu J (2012) Fine structure, enzyme histochemistry, and immunohistochemistry of liver in zebrafish. Anat Rec (Hoboken) 295:567–576. https://doi.org/10.1002/ar.22416

    Article  CAS  Google Scholar 

  78. Daly JJ, Schiller AL (1976) The liver in hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu disease). Am J Med 60:723–726. https://doi.org/10.1016/0002-9343(76)90510-6

    Article  CAS  PubMed  Google Scholar 

  79. Sawabe M, Arai T, Esaki Y, Tsuru M, Fukazawa T, Takubo K (2001) Three-dimensional organization of the hepatic microvasculature in hereditary hemorrhagic telangiectasia. Arch Pathol Lab Med 125:1219–1223. https://doi.org/10.1043/0003-9985(2001)125%3c1219:TDOOTH%3e2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  80. Sugden WW, Meissner R, Aegerter-Wilmsen T, Tsaryk R, Leonard EV, Bussmann J, Hamm MJ, Herzog W, Jin Y, Jakobsson L, Denz C, Siekmann AF (2017) Endoglin controls blood vessel diameter through endothelial cell shape changes in response to haemodynamic cues. Nat Cell Biol 19:653–665. https://doi.org/10.1038/ncb3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Garcia-Tsao G (2007) Liver involvement in hereditary hemorrhagic telangiectasia (HHT). J Hepatol 46:499–507. https://doi.org/10.1016/j.jhep.2006.12.008

    Article  CAS  PubMed  Google Scholar 

  82. Niessen K, Zhang G, Ridgway JB, Chen H, Yan M (2010) ALK1 signaling regulates early postnatal lymphatic vessel development. Blood 115:1654–1661. https://doi.org/10.1182/blood-2009-07-235655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Subileau M, Merdzhanova G, Ciais D, Collin-Faure V, Feige JJ, Bailly S, Vittet D (2019) Bone morphogenetic protein 9 regulates early lymphatic-specified endothelial cell expansion during mouse embryonic stem cell differentiation. Stem Cell Rep 12:98–111. https://doi.org/10.1016/j.stemcr.2018.11.024

    Article  CAS  Google Scholar 

  84. Levet S, Ciais D, Merdzhanova G, Mallet C, Zimmers TA, Lee SJ, Navarro FP, Texier I, Feige JJ, Bailly S, Vittet D (2013) Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood 122:598–607. https://doi.org/10.1182/blood-2012-12-472142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ginon I, Decullier E, Finet G, Cordier JF, Marion D, Saurin JC, Dupuis-Girod S (2013) Hereditary hemorrhagic telangiectasia, liver vascular malformations and cardiac consequences. Eur J Intern Med 24:e35–e39. https://doi.org/10.1016/j.ejim.2012.12.013

    Article  PubMed  Google Scholar 

  86. Sergeeva IA, Christoffels VM (2013) Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart development and disease. Biochim Biophys Acta 1832:2403–2413. https://doi.org/10.1016/j.bbadis.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  87. Reddy YNV, Melenovsky V, Redfield MM, Nishimura RA, Borlaug BA (2016) High-output heart failure: a 15-year experience. J Am Coll Cardiol 68:473–482. https://doi.org/10.1016/j.jacc.2016.05.043

    Article  PubMed  Google Scholar 

  88. Wooderchak-Donahue WL, McDonald J, O’Fallon B, Upton PD, Li W, Roman BL, Young S, Plant P, Fulop GT, Langa C, Morrell NW, Botella LM, Bernabeu C, Stevenson DA, Runo JR, Bayrak-Toydemir P (2013) BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet 93:530–537. https://doi.org/10.1016/j.ajhg.2013.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG, Exome Aggregation C (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291. https://doi.org/10.1038/nature19057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Graf S, Haimel M, Bleda M, Hadinnapola C, Southgate L, Li W, Hodgson J, Liu B, Salmon RM, Southwood M, Machado RD, Martin JM, Treacy CM, Yates K, Daugherty LC, Shamardina O, Whitehorn D, Holden S, Aldred M, Bogaard HJ, Church C, Coghlan G, Condliffe R, Corris PA, Danesino C, Eyries M, Gall H, Ghio S, Ghofrani HA, Gibbs JSR, Girerd B, Houweling AC, Howard L, Humbert M, Kiely DG, Kovacs G, MacKenzie Ross RV, Moledina S, Montani D, Newnham M, Olschewski A, Olschewski H, Peacock AJ, Pepke-Zaba J, Prokopenko I, Rhodes CJ, Scelsi L, Seeger W, Soubrier F, Stein DF, Suntharalingam J, Swietlik EM, Toshner MR, van Heel DA, Vonk Noordegraaf A, Waisfisz Q, Wharton J, Wort SJ, Ouwehand WH, Soranzo N, Lawrie A, Upton PD, Wilkins MR, Trembath RC, Morrell NW (2018) Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nat Commun 9:1416. https://doi.org/10.1038/s41467-018-03672-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Long L, Ormiston ML, Yang X, Southwood M, Graf S, Machado RD, Mueller M, Kinzel B, Yung LM, Wilkinson JM, Moore SD, Drake KM, Aldred MA, Yu PB, Upton PD, Morrell NW (2015) Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med 21:777–785. https://doi.org/10.1038/nm.3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kang Q, Sun MH, Cheng H, Peng Y, Montag AG, Deyrup AT, Jiang W, Luu HH, Luo J, Szatkowski JP, Vanichakarn P, Park JY, Li Y, Haydon RC, He TC (2004) Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther 11:1312–1320. https://doi.org/10.1038/sj.gt.3302298

    Article  CAS  PubMed  Google Scholar 

  93. Little SC, Mullins MC (2009) Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat Cell Biol 11:637–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Montague TG, Schier AF (2017) Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm. eLife. https://doi.org/10.7554/elife.28183

    Article  PubMed  PubMed Central  Google Scholar 

  95. Pashmforoush M, Lu JT, Chen H, Amand TS, Kondo R, Pradervand S, Evans SM, Clark B, Feramisco JR, Giles W, Ho SY, Benson DW, Silberbach M, Shou W, Chien KR (2004) Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117:373–386

    Article  CAS  PubMed  Google Scholar 

  96. Grego-Bessa J, Luna-Zurita L, del Monte G, Bolos V, Melgar P, Arandilla A, Garratt AN, Zang H, Mukouyama YS, Chen H, Shou W, Ballestar E, Esteller M, Rojas A, Perez-Pomares JM, de la Pompa JL (2007) Notch signaling is essential for ventricular chamber development. Dev Cell 12:415–429. https://doi.org/10.1016/j.devcel.2006.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee J, Fei P, Packard RR, Kang H, Xu H, Baek KI, Jen N, Chen J, Yen H, Kuo CC, Chi NC, Ho CM, Li R, Hsiai TK (2016) 4-Dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation. J Clin Investig 126:1679–1690. https://doi.org/10.1172/JCI83496

    Article  PubMed  PubMed Central  Google Scholar 

  98. Morine KJ, Qiao X, Paruchuri V, Aronovitz MJ, Mackey EE, Buiten L, Levine J, Ughreja K, Nepali P, Blanton RM, Karas RH, Oh SP, Kapur NK (2017) Conditional knockout of activin like kinase-1 (ALK-1) leads to heart failure without maladaptive remodeling. Heart Vessels 32:628–636. https://doi.org/10.1007/s00380-017-0955-x

    Article  PubMed  Google Scholar 

  99. Iyer VN, Saberi B, Heimbach JK, Larson JJ, Raghavaiah S, Ditah I, Swanson K, Kamath PS, Watt KD, Taner T, Krowka MJ, Leise MD (2018) Liver transplantation trends and outcomes for hereditary hemorrhagic telangiectasia In the United States. Transplantation. https://doi.org/10.1097/TP.0000000000002491

    Article  PubMed  PubMed Central  Google Scholar 

  100. Mehta PA, Dubrey SW (2009) High output heart failure. QJM 102:235–241. https://doi.org/10.1093/qjmed/hcn147

    Article  CAS  PubMed  Google Scholar 

  101. Dumortier J, Dupuis-Girod S, Valette PJ, Valent A, Guillaud O, Saurin JC, Hervieu V, Robinson P, Plauchu H, Paliard P, Boillot O, Scoazec JY (2019) Recurrence of hereditary hemorrhagic telangiectasia after liver transplantation: clinical implications and physiopathological insights. Hepatology 69:2232–2240. https://doi.org/10.1002/hep.30424

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Keith Joung (Massachusetts General Hospital) for generating TALENs (NIH R01GM088040); the Sanger Institute Zebrafish Mutation Project, Sarah Childs (University of Calgary), Ching-Ling Lien (University of Southern California), Stephan Schulte-Merker (University of Münster), and Deborah Yelon (University of California-San Diego) for providing fish lines; Su Diler for technical assistance; Brenda Diergaarde (University of Pittsburgh) for statistical help; and Rachael Gerheart, Yahya Lodi, and Pitt aquatics staff for fish care.

Funding

This work was funded by the National Heart, Lung and Blood Institute of the National Institutes of Health (NIH), R01HL133009 (BR), R01HL136566 (BR), and UM1HL098160 (HJY), and the Institute for Transfusion Medicine/Vitalant (BLR). The Vevo2100 small animal imaging system was funded by NIH 1S10RR027383-01 (KK).

Author information

Authors and Affiliations

Authors

Contributions

BLR designed the research, generated mutants, and wrote the manuscript. TLC contributed to research design, performed experiments, analyzed data, and contributed to manuscript preparation. BL performed adult heart analysis and coordinated and summarized ultrasound imaging experiments. HJV, WK, FSV, and KK performed ultrasound imaging and data analysis. ERR and AA provided technical assistance. CH and HJY analyzed single cell RNAseq data. All authors contributed to final editing and approval of the manuscript.

Corresponding author

Correspondence to Beth L. Roman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the University of Pittsburgh (PHS approval A3187-01).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 583 kb)

Supplementary material 2 (PDF 2595kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capasso, T.L., Li, B., Volek, H.J. et al. BMP10-mediated ALK1 signaling is continuously required for vascular development and maintenance. Angiogenesis 23, 203–220 (2020). https://doi.org/10.1007/s10456-019-09701-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-019-09701-0

Keywords

Navigation