Skip to main content

Advertisement

Log in

Quantifying the relationship between airborne pollen and vegetation in the urban environment

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The goal of this study was to quantitatively assess the relationship linking vegetation and airborne pollen. For this, we established six sampling stations in the city of Thessaloniki, Greece. Once every week for 2 years, we recorded airborne pollen in them, at breast height, by use of a portable volumetric sampler. We also made a detailed analysis of the vegetation in each station by counting all existing individuals of the woody species contributing pollen to the air, in five zones of increasing size, from 4 to 40 ha. We found the local vegetation to be the driver of the spatial variation of pollen in the air of the city. Even at very neighbouring stations, only 500 m apart, considerable differences in vegetation composition were expressed in the pollen spectrum. We modelled the pollen concentration of each pollen taxon as a function of the abundance of the woody species corresponding to that taxon by use of a Generalized Linear Model. The relationship was significant for the five most abundantly represented taxa in the pollen spectrum of the city. It is estimated that every additional individual of Cupressaceae, Pinaceae, Platanus, Ulmus and Olea increases pollen in the air by approximately 0.7, 0.2, 2, 6 and 5%, respectively. Whether the relationships detected for the above pollen taxa hold outside the domain for which we have data, as well as under different environmental conditions and/or with different assemblages of species representing them are issues to be explored in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alcázar, P., Cariñanos, P., De Castro, C., Guerra, F., Moreno, C., Domínguez-Vilches, E., et al. (2004). Airborne plane tree (Platanus hispanica) pollen distribution in the city of Córdoba, South-Western Spain, and possible implications on pollen allergy. Journal of Investigational Allergology and Clinical Immunology, 14, 238–243.

    Google Scholar 

  • Beckett, K. P., Freer-Smith, P. H., & Taylor, G. (2000). Particulate pollution capture by urban trees: Effect of species and windspeed. Global Change Biology, 6, 995–1003.

    Article  Google Scholar 

  • British Aerobiology Federation. (1995). Airborne pollens and spores. A guide to trapping and counting. Rotherham: National Pollen and Hayfever Bureau.

    Google Scholar 

  • Canty, A., & Ripley, B. (2015). Boot: Bootstrap R (S-Plus) Functions. R package version 1.3-17.

  • Cariñanos, P., Alcázar, P., Galán, C., & Dominguez, E. (2002a). Privet pollen (Ligustrum sp.) as potential cause of pollinosis in the city of Cordoba, southwest Spain. Allergy, 57, 1–7.

    Article  Google Scholar 

  • Cariñanos, P., & Casares, M. (2011). Urban green zones and related pollen allergy: A review. Guidelines for designing spaces of low allergy impact. Landscape and Urban Planning, 101, 205–214.

    Article  Google Scholar 

  • Cariñanos, P., Casares-Porcel, M., & Quesada-Rubio, J. M. (2014). Estimating the allergenic potential of urban green spaces: A case-study in Granada, Spain. Landscape and Urban Planning, 123, 134–144.

    Article  Google Scholar 

  • Cariñanos, P., Galán, C., Alcázar, P., & Dominguez, E. (2008). Classification, analysis and interaction of solid airborne particles in urban environments. In A. G. Kungolos, C. A. Brebbia, & M. Zamorano (Eds.), Environmental toxicology II (pp. 317–325). Southampton: WIT Press.

    Google Scholar 

  • Cariñanos, P., Galán, C., Alcázar, P., & Domínguez, E. (2007). Analysis of the solid particulate matter suspended in the atmosphere of Córdoba, south-western Spain. Annals of Agricultural and Environmental Medicine, 14, 159–160.

    Google Scholar 

  • Cariñanos, P., Sánchez-Mesa, J. A., Prieto-Baena, J. C., Lopez, A., Guerra, F., Moreno, C., et al. (2002b). Pollen allergy related to the area of residence in the city of Córdoba, south-west Spain. Journal of Environmental Monitoring, 4, 734–738.

    Article  Google Scholar 

  • Charalampopoulos, A. (2017). Pollen-scapes in natural and urban environments: Production and atmospheric circulation of pollen grains at different heights and elevations (Ph.D. thesis, in Greek). Thessaloniki: Aristotle University of Thessaloniki.

  • Charalampopoulos, A., Damialis, A., Tsiripidis, I., Mavrommatis, T., Halley, J. M., & Vokou, D. (2013). Pollen production and circulation patterns along an elevation gradient in Mt Olympos (Greece) National Park. Aerobiologia, 29, 455–472.

    Article  Google Scholar 

  • Charpin, D., Calleja, M., Lahoz, C., Pichot, C., & Waisel, Y. (2005). Allergy to cypress pollen. Allergy, 60, 293–301.

    Article  CAS  Google Scholar 

  • D’Amato, G., Cecchi, L., D’Amato, M., & Liccardi, G. (2010). Urban air pollution and climate change as environmental risk factors of respiratory allergy: An update. Journal of Investigational Allergology and Clinical Immunology, 20, 95–102.

    Google Scholar 

  • Damialis, A., Fotiou, C., Halley, J. M., & Vokou, D. (2011). Effects of environmental factors on pollen production in anemophilous woody species. Trees, 25, 253–264.

    Article  Google Scholar 

  • Damialis, A., Halley, J. M., Gioulekas, D., & Vokou, D. (2007). Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmospheric Environment, 41, 7011–7021.

    Article  CAS  Google Scholar 

  • Dzierzanowski, K., Popek, R., & Gawronska, H. (2011). Deposition of particulate matter of different size fraction on leaf surfaces and in waxes of urban forests species. International Journal of Phytoremediation, 13, 1037–1046.

    Article  CAS  Google Scholar 

  • ESRI. (2011). ArcGIS desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.

    Google Scholar 

  • Euro + Med (2006): Euro + Med PlantBase—the information resource for Euro-Mediterranean plant diversity. Published on the Internet http://ww2.bgbm.org/EuroPlusMed/. Accessed May 17, 2017.

  • Fotiou, C., Damialis, A., Krigas, N., Halley, J. M., & Vokou, D. (2011). Parietaria judaica flowering phenology, pollen production, viability and atmospheric circulation, and expansive ability in the urban environment: Impacts of environmental factors. International Journal of Biometeorology, 55, 35–50.

    Article  Google Scholar 

  • González, F. J., & Candau, P. (1997). Study on pollen content in the air of Seville (SW Spain): The pollen spectrum and its relation with vegetation and anthropogenic activity. Botanica Helvetica, 107, 221–237.

    Google Scholar 

  • Gonzalo-Garijo, M. A., Tormo-Molina, R., Muñoz-Rodríguez, A. F., & Silva-Palacios, I. (2006). Differences in the spatial distribution of airborne pollen concentrations at different urban locations within a city. Journal of Investigational Allergology and Clinical Immunology, 16, 37–43.

    Google Scholar 

  • Google Earth Pro v.7.1.7.2602 [April 20, 2017] Thessaloniki, Greece. 40°37’11.53”N, 22°55’36.78”E, Eye alt 13.12 km, Digital Globe, 2017, http://www.earth.google.com. Accessed April 30, 2017.

  • Grant, G. (2012). Ecosystem services come to town: Greening cities by working with nature. Chicester: Wiley.

    Book  Google Scholar 

  • Green, R. J., & Davis, G. (2005). The burden of allergic rhinitis. Current Allergy and Clinical Immunology, 18, 176–178.

    Google Scholar 

  • Grewling, Ł., Šikoparija, B., Skjøth, C., Radišić, P., Apatini, D., Magyar, D., et al. (2012). Variation in Artemisia pollen seasons in Central and Eastern Europe. Agricultural and Forest Meteorology, 160, 48–59.

    Article  Google Scholar 

  • Haberle, S. G., Bowman, D. M., Newnham, R. M., Johnston, F. H., Beggs, P. J., Buters, J., et al. (2014). The macroecology of airborne pollen in Australian and New Zealand urban areas. PLoS ONE, 9, e97925.

    Article  CAS  Google Scholar 

  • Hidalgo, P. J., Galán, C., & Domínguez, E. (1999). Pollen production of the genus Cupressus. Grana, 38, 296–300.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • Hruska, K. (2003). Assessment of urban allergophytes using and allergen index. Aerobiologia, 19, 107–111.

    Article  Google Scholar 

  • Jim, C. Y. (2013). Sustainable urban greening strategies for compact cities in developing and developed economies. Urban Ecosystems, 16, 741–761.

    Article  Google Scholar 

  • Karagiannakidou, V., & Raus, T. (1996). Vascular plants from Mount Chortiatis (Macedonia, Greece). Willdenovia, 25, 487–559.

    Google Scholar 

  • Kasprzyk, K. I. (2006). Comparative study of seasonal and intradiurbnal variation in airborne pollen in urban and rural areas. Aerobiologia, 22, 185–195.

    Article  Google Scholar 

  • Katelaris, C. H., Burke, T. V., & Byth, K. (2004). Spatial variability in the pollen count in Sydney, Australia: Can one sampling site accurately reflect the pollen count for a region? Annals of Allergy, Asthma & Immunology, 93, 131–136.

    Article  Google Scholar 

  • Krigas, N. (2004). Flora and human activities in the area of Thessaloniki: Biological approach and historical considerations (Ph.D. thesis, in Greek). Thessaloniki: Aristotle University of Thessaloniki.

  • Latinopoulos, D., Mailios, Z., & Latinopoulos, P. (2016). Valuing the benefits of an urban park project: A contingent valuation study in Thessaloniki, Greece. Land Use Policy, 55, 130–141.

    Article  Google Scholar 

  • Livesley, S. J., McPherson, G. M., & Calfapietra, C. (2016). The urban forests and ecosystem services: Impacts on water, heat and pollution cycles at the tree, street and city scale. Journal of Environmental Quality, 45, 119–124.

    Article  CAS  Google Scholar 

  • Med-Checklist (2006). A critical inventory of vascular plants of the circum-mediterranean countries. Published on the Internet http://ww2.bgbm.org/mcl/. Accessed May 22, 2017.

  • Nazridoust, K., & Ahmadi, G. (2006). Airflow and pollutant transport in Street canyon. Journal of Wind Engineering and Industrial Aerodynamics, 94, 491–522.

    Article  Google Scholar 

  • Nicolau, N., Siddique, N., & Custovic, A. (2005). Allergic disease in urban and rural populations: Increasing prevalence with increasing urbanization. Allergy, 60, 1357–1360.

    Article  Google Scholar 

  • Nowak, M. A., Szymanska, L., & Grewling, L. (2012). Allergic risk zones of plane tree pollen (Platanus sp.) in Poznan. Postepy Dermatologii I Alergologii, 29, 156–160.

    Google Scholar 

  • O’Rourke, M. K., & Lebowitz, M. D. (1984). A comparison of regional atmospheric pollen with pollen collected at and near homes. Grana, 23, 55–64.

    Article  Google Scholar 

  • Oksanen, J., Blanchet, G., Kindt, R., Minchin, P. R., Legendre, P., O’Hara, B., & Suggests, M. A. S. S. (2012). Vegan: Community Ecology Package. R package Version 2.0–3. Available at: http://cran.r-project.org/.

  • Pawankar, R. (2014). Allergic diseases and asthma: A global public health concern and call to action. World Allergy Organization Journal, 7, 12.

    Article  Google Scholar 

  • Peel, R. G., Hertel, O., Smith, M., & Kennedy, R. (2013). Personal exposure to grass pollen: Relating inhaled dose to background concentration. Annals of Allergy, Asthma & Immunology, 111, 548–554.

    Article  CAS  Google Scholar 

  • Puc, M. (2011). Threat of allergenic airborne grass pollen in Szczecin, NW Poland: The dynamics of pollen seasons, effect of meteorological variables and air pollution. Aerobiologia, 27, 191–202.

    Article  Google Scholar 

  • R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Reed, S. D., Lee, T. A., & McCrory, D. C. (2004). The economic burden of allergic rhinitis: A critical evaluation of the literature. Pharmacoeconomics, 22, 345–361.

    Article  Google Scholar 

  • RNSA (2016). Vegétation en ville: Guide d’ information. http://www.vegetation-en-ville.org/wp-content/themes/vegetationenville/PDF/Guide-Vegetation.pdf.

  • Rodriguez-Rajo, F. J., Fernández-sevilla, D., Stach, A., & Jato, V. (2010). Assessment between pollen seasons in areas with different urbanization level related to local vegetation sources and differences in allergen exposures. Aerobiologia, 26, 1–4.

    Article  Google Scholar 

  • Rojo, J., Rapp, A., Lara, B., Fernández-González, F., & Pérez-Badia, R. (2015). Effect of land uses and wind direction on the contribution of local sources to airborne pollen. Science of the Total Environment, 538, 672–682.

    Article  CAS  Google Scholar 

  • Shackleton, S., Chinyimba, A., Hebinck, P., Shackleton, C., & Kaoma, H. (2015). Multiple benefits and value of trees in urban landscapes in two towns in northern South Africa. Landscape and Urban Planning, 136, 76–86.

    Article  Google Scholar 

  • Šikoparija, B., Radisik, P., Pejak, T., & Simié, S. (2006). Airborne grass and ragweed pollen in the southern pannonian valley: Consideration of rural and urban environments. Annals of Agricultural and Environmental Medicine, 13, 263–266.

    Google Scholar 

  • Skjøth, C. A., Ørby, P. V., Becker, T., Geels, C., Schlünssen, V., Sigsgaard, T., et al. (2013). Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. Biogeosciences, 10, 541–554.

    Article  Google Scholar 

  • Tormo-Molina, R., Rodríguez, A. M., Palaciso, I. S., & López, F. G. (1996). Pollen production in anemophilous tree. Grana, 35, 38–46.

    Article  Google Scholar 

  • von Döhren, P., & Haase, D. (2015). Ecosystem disservices research: a review of the state of the art with a focus on cities. Ecological Indicators, 52, 490–497.

    Article  Google Scholar 

  • Walters, S. M., Alexander, J. C. M., Brady, A., Brickell, C. D., Cullen, J., Green, P. S., Heywood, V. H., Matthews, V. A., Robson, N. K. B., Yeo, P. F., & Knees, S. G. (Eds) (1989). The European Garden Flora volume III. Dicotyledons (Part I). Cambridge: Cambridge University Press.

  • Weinberger, K. R., Kinney, P. L., & Lovasi, G. S. (2015). A review of spatial variation of allergenic tree pollen within cities. Arboriculture & Urban Forestry, 41, 57–68.

    Google Scholar 

  • Werchan, B., Werchan, M., Mücke, H. G., Gauger, U., Simoleit, A., Zuberbier, T., et al. (2017). Spatial distribution of allergenic pollen through a large metropolitan area. Environmental Monitoring and Assessment, 189, 169.

    Article  Google Scholar 

  • WHO (World Health Organization) (2013). Review of Evidence on Health Aspects of Air Pollution - REVIHAAP. First Results. Copenhagen, Denmark:WHO Regional Office for Europe.

  • Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K. C., Bucher, E., et al. (2012). Changes to airborne pollen counts across Europe. PLoS ONE, 7, e34076.

    Article  CAS  Google Scholar 

  • Ziska, L. H., Bunce, J. A., & Goins, E. W. (2004). Characterization of an urban–rural CO2/temperature gradient and associated changes in initial plant productivity during secondary succession. Oecologia, 139, 454–458.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the programs ‘Aristeia Scholarship 2014’ and ‘Action C: Supporting Research activity of Basic Research 2013’ of the Aristotle University of Thessaloniki (AUTH), Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Charalampopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charalampopoulos, A., Lazarina, M., Tsiripidis, I. et al. Quantifying the relationship between airborne pollen and vegetation in the urban environment. Aerobiologia 34, 285–300 (2018). https://doi.org/10.1007/s10453-018-9513-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-018-9513-y

Keywords

Navigation