Skip to main content
Log in

Biomonitoring of pesticides in agricultural river catchments: a case study from two river catchments in tropical Sri Lanka

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Monitoring of pesticide pollution in aquatic systems is a complex process and often constrained by high costs and methodical complexities associated with pesticide measurements in many regions of the world. A trait-based Species at Risk (SPEAR) biomonitoring approach has been conducted to test the responsiveness of the SPEAR_pesticides index to pesticide effects in two tropical river catchments in Sri Lanka. The effects of pesticide toxicity (TU(D.magna)), water quality parameters, channel quality (CQI), and landuse on SPEAR pesticides index and other biotic indices, i.e., family richness of macroinvertebrates (FR) and %EPT (Ephemeroptera, Plecoptera, and Trichoptera) taxa in streams were tested using stepwise multiple linear regression analysis approaches. The analyses revealed that the SPEAR_pesticides index and FR respond favorably to the TU(D.magna) and CQI (p < 0.05). % EPT did not significantly respond to any of the measured instream variables. The catchment scale agricultural activities negatively affected the SPEAR_pesticides and FR, while riparian forest cover acted to improve both indices. The findings of the study suggest the possibility of using SPEAR_pesticides for pesticide impacts assessment in tropical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article, and raw data are available upon request.

References

  • Abbasi Y, Mannaerts CM (2018) Evaluating organochlorine pesticide residues in the aquatic environment of the Lake Naivasha River basin using passive sampling techniques. Environ Monit Assess. https://doi.org/10.1007/s10661-018-6839-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Amarathunga A, Kazama F (2017) Impact of farmer perceptions and land use pattern on pesticide loading into upper kotmale sub-watershed of Mahaweli River Basin in Sri Lanka Asian. J Water Environ Pollut 9:99. https://doi.org/10.3233/ajw-170036

    Article  Google Scholar 

  • Anju A, Ravi SP, Bechan S (2010) Water pollution with special reference to pesticide contamination in India. J Water Resource Prot. https://doi.org/10.4236/jwarp.2010.25050

    Article  Google Scholar 

  • APHA (2012) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Baltimore

    Google Scholar 

  • Aravinna P, Priyantha N, Pitawala A, Yatigammana SK (2017) Use pattern of pesticides and their predicted mobility into shallow groundwater and surface water bodies of paddy lands in Mahaweli river basin in Sri Lanka. J Environ Health. https://doi.org/10.1080/03601234.2016.1229445

    Article  Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish. US Environmental Protection Agency, Office of Water Washington, DC

  • Beketov MA, Liess M (2008) An indicator for effects of organic toxicants on lotic invertebrate communities: Independence of confounding environmental factors over an extensive river continuum. Environ Pollut 156(3):980–987

    Article  CAS  PubMed  Google Scholar 

  • Beketov M et al (2009) SPEAR indicates pesticide effects in streams–comparative use of species-and family-level biomonitoring data. Environ Pollut. https://doi.org/10.1016/j.envpol.2009.01.021

    Article  PubMed  Google Scholar 

  • Berenzen N, Kumke T, Schulz HK, Schulz R (2005) Macroinvertebrate community structure in agricultural streams: impact of runoff-related pesticide contamination. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2003.10.010

    Article  PubMed  Google Scholar 

  • Bonada N, Doledec S, Statzner B (2007) Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Glob Chang Biol 13(8):1658–1671

    Article  Google Scholar 

  • Bo T, Fenoglio S, Malacarne G, Pessino M, Sgariboldi F (2007) Effects of clogging on stream macroinvertebrates: an experimental approach. Limnologica. https://doi.org/10.1016/j.limno.2007.01.002

    Article  Google Scholar 

  • Brodeur JC, Sanchez M, Castro L, Rojas DE, Cristos D, Damonte MJ, Poliserpi MB, D’andrea MF, Andriulo AE (2017) Accumulation of current-use pesticides, cholinesterase inhibition and reduced body condition in juvenile one-sided livebearer fish (Jenynsia multidentata) from the agricultural Pampa region of Argentina. Chemosphere 1(185):36–46

    Article  Google Scholar 

  • Brunke M, Hoffmann A, Pusch M (2001) Use of mesohabitat-specific relationships between flow velocity and river discharge to assess invertebrate minimum flow requirements. Regul Rivers Res Manag Int J Devot River Res Manag 17(6):667–676

    Article  Google Scholar 

  • Bunzel K, Liess M, Kattwinkel M (2014) Landscape parameters driving aquatic pesticide exposure and effects. Environ Pollut. https://doi.org/10.1016/j.envpol.2013.11.021

    Article  PubMed  Google Scholar 

  • CEA (2001) Proposed ambient water quality standards for inland waters of Sri Lanka. Central Environmental Authority (CEA), Sri Lanka

  • Chase JW, Benoy GA, Hann SWR, Culp JM (2016) Small differences in riparian vegetation significantly reduce land use impacts on stream flow and water quality in small agricultural watersheds. J Soil Water Conserv 71(3):194–205

    Article  Google Scholar 

  • Cornejo A, Tonin AM, Checa B, Tuñon AR, Pérez D, Coronado E, González S, Ríos T, Macchi P, Correa-Araneda F, Boyero L (2019) Effects of multiple stressors associated with agriculture on stream macroinvertebrate communities in a tropical catchment. PLoS ONE 14(8):e0220528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cranston PS, Nolte U (1996) Fissimentum, a new genus of drought tolerant Chironomini (Diptera: Chironomidae) from the Americas and Australia. Entomol News 107:1–15

    Google Scholar 

  • Dabrowski J, Peall S, Reinecke A, Liess M, Schulz R (2002) Runoff-related pesticide input into the Lourens River, South Africa: basic data for exposure assessment and risk mitigation at the catchment scale. Water Air Soil Pollut. https://doi.org/10.1023/a:1014705931212

    Article  Google Scholar 

  • Diaz AM, Alonsol MLS, Gutierrez MRVA (2008) Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshw Biol. https://doi.org/10.1111/j.1365-2427.2007.01854.x

    Article  Google Scholar 

  • Dissanayake C, Weerasooriya S (1986) The environmental chemistry of Mahaweli river, Sri Lanka. Int J Environ Stud 9:99. https://doi.org/10.1080/00207238608710324

    Article  Google Scholar 

  • Echeverría S, Mena F, Pinnock M, Ruepert C, Solano K, de la Cruz E, Campos B, SánchezÁvila J, Lacorte S, Barata C (2012) Environmental hazards of pesticides from pineapple crop production in the Río Jimenez watershed (Caribbean Coast, Costa Rica). Sci Total Environ 440:106–114

    Article  Google Scholar 

  • Ecobichon DJ (2001) Pesticide use in developing countries. Toxicology. https://doi.org/10.1016/s0300-483x(00)00452-2

    Article  PubMed  Google Scholar 

  • Edwards C (2013) Environmental pollution by pesticides. Springer. https://doi.org/10.1007/978-1-4615-8942-6

    Book  Google Scholar 

  • Friberg N, Lindstrøm M, Kronvang B, Larsen SE (2003) Macroinvertebrate/sediment relationships along a pesticide gradient in Danish streams. The Interactions between sediments and water. Springer. https://doi.org/10.1007/978-94-017-3366-3_15

    Chapter  Google Scholar 

  • Friberg N, Sandin L, Pedersen ML (2009) Assessing the effects of hydromorphological degradation on macroinvertebrate indicators in rivers: examples, constraints, and outlook. Integr Environ Assess Manag 5(1):86–96

    Article  CAS  PubMed  Google Scholar 

  • Gentil C, Fantke P, Mottes C, Basset-Mens C (2020) Challenges and ways forward in pesticide emission and toxicity characterization modeling for tropical conditions. Int J Life Cycle Assess 25(7):1290–1306

    Article  CAS  Google Scholar 

  • Ghanem M, Samhan S, Carlie E, Ali W (2011) Groundwater pollution due to pesticides and heavy metals in North West Bank. J Environ Prot. https://doi.org/10.4236/jep.2011.24049

    Article  Google Scholar 

  • Gill HK, Garg H (2014) Pesticide: environmental impacts and management strategies Pesticides-toxic aspects. https://doi.org/10.5772/57399

  • Gooderham J, Tsyrlin E (2002) The waterbug book: a guide to the freshwater macroinvertebrates of temperate Australia. CSIRO Publishing. https://doi.org/10.1071/9780643090026

    Book  Google Scholar 

  • Gunawardhana W, Jayawardhana J, Udayakumara E, Malavipathirana S (2018) Spatio-temporal variation of water quality and bio indicators of the Badulu Oya in Sri Lanka due to catchment disturbances. J Natl Sci Found. https://doi.org/10.4038/jnsfsr.v46i1.8265

    Article  Google Scholar 

  • Hose GC, Lim RP, Hyne RV, Pablo F (2002) A pulse of endosulfan-contaminated sediment affects macroinvertebrates in artificial streams. Ecotoxicol Environ Saf 51(1):44–52

    Article  CAS  PubMed  Google Scholar 

  • Hunt L, Bonetto C, Marrochi N, Scalise A, Fanelli S, Liess M, Lydy MJ, Chiu MC, Resh VH (2017) Species at Risk (SPEAR) index indicates effects of insecticides on stream invertebrate communities in soy production regions of the Argentine Pampas. Sci Total Environ 580:699–709

    Article  CAS  PubMed  Google Scholar 

  • Jayakody LN, Horie K, Hayashi N, Kitagaki H (2013) Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-013-4997-4

    Article  PubMed  Google Scholar 

  • Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment Interdisciplinary. Toxicology. https://doi.org/10.1515/intox-2016-0012

    Article  Google Scholar 

  • Jayawardana J, Westbrooke M, Wilson M (2010) Leaf litter decomposition and utilisation by macroinvertebrates in a central Victorian river in Australia. Vic Nat. https://doi.org/10.1007/s10750-006-0103-6

    Article  Google Scholar 

  • Jayawardana J, Gunawardana W, Udayakumara EPN, Westbrooke M (2017) Land use impacts on river health of Uma Oya, Sri Lanka: implications of spatial scales. Environ Monit Assess. https://doi.org/10.1007/s10661-017-5863-0

    Article  PubMed  Google Scholar 

  • Joly C, Gay-Quéheillard J, Léké A, Chardon K, Delanaud S, Bach V, Khorsi-Cauet H (2013) Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) and in the rat. Environ Sci Pollut Res 9:99. https://doi.org/10.1007/s10750-006-0103-6

    Article  Google Scholar 

  • Jones J, Murphy J, Collins A, Sear D, Naden P, Armitage P (2012) The impact of fine sediment on macro-invertebrates. River Res Appl. https://doi.org/10.1002/rra.1516

    Article  Google Scholar 

  • Jordaan MS, Reinecke SA, Reinecke AJ (2012) Acute and sublethal effects of sequential exposure to the pesticide azinphos-methyl on juvenile earthworms (Eisenia andrei). Ecotoxicology. https://doi.org/10.1007/s10646-011-0821-z

    Article  PubMed  Google Scholar 

  • Kattwinkel M, Kühne JV, Foit K, Liess M (2011) Climate change, agricultural insecticide exposure, and risk for freshwater communities. Ecol Appl. https://doi.org/10.1890/10-1993.1

    Article  PubMed  Google Scholar 

  • Knott J, Mueller M, Pander J, Geist J (2019) Effectiveness of catchment erosion protection measures and scale-dependent response of stream biota. Hydrobiologia. https://doi.org/10.1007/s10750-018-3856-9

    Article  Google Scholar 

  • Kumar A, Correll R, Grocke S, Bajet C (2010) Toxicity of selected pesticides to freshwater shrimp, Paratya australiensis (Decapoda: Atyidae): use of time series acute toxicity data to predict chronic lethality. Ecotoxicol Environ Saf 73:360–369. https://doi.org/10.1016/j.ecoenv.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  • Lenat DR, Crawford JK (1994) Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams. Hydrobiologia. https://doi.org/10.1007/bf00021291

    Article  Google Scholar 

  • Liess M, Ohe PCVD (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem. https://doi.org/10.1897/03-652.1

    Article  PubMed  Google Scholar 

  • Liess M, Schulz R (1996) Chronic effects of short-term contamination with the pyrethroid insecticide fenvalerate on the caddisfly Limnephilus lunatus. Hydrobiologia 324:99–106

    Article  CAS  Google Scholar 

  • Liess M, Schulz R (1999) Linking insecticide contamination and population response in an agricultural stream. Environ Toxicol Chem. https://doi.org/10.1002/etc.5620180913

    Article  PubMed  Google Scholar 

  • Louhi P, Mäki-Petäys A, Erkinaro J, Paasivaara A, Muotka T (2010) Impacts of forest drainage improvement on stream biota: a multisite BACI-experiment. Forest Ecol Manag 9:99. https://doi.org/10.1016/j.foreco.2010.07.024

    Article  Google Scholar 

  • Maltby L (1999) Studying stress: The importance of organism-level responses. Ecol Appl 9(2):431–440

    Article  Google Scholar 

  • Malherbe W, van Vuren JH, Wepener V (2018) The application of a macroinvertebrate indicator in Afrotropical regions for pesticide pollution. J Toxicol 12:2018

    Google Scholar 

  • Mendis AS, Fernando CH (2002) A guide to the freshwater fauna of Ceylon (Sri Lanka)

  • Mesnage R, Bernay B, Séralini GE (2013) Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology. https://doi.org/10.1016/j.tox.2012.09.006

    Article  PubMed  Google Scholar 

  • Miyake Y, Nakano S (2002) Effects of substratum stability on diversity of stream invertebrates during baseflow at two spatial scales. Freshw Biol 47:219–230

    Article  Google Scholar 

  • Pedersen ML, Friberg N (2009) Influence of disturbance on habitats and biological communities in lowland streams. Fundam Appl Limnol 174(1):27–41

    Article  CAS  Google Scholar 

  • Pinder AM, Brinkhurst RO (1994) A preliminary guide to the identification of microdrile Oligochaeta of Australian inland waters. Co-operative Research Centre for Freshwater Ecology

  • Ramirez-Morales D, Perez-Villanueva ME, Chin-Pampillo JS, Aguilar-Mora P, Arias-Mora V, Masis-Mora M (2021) Pesticide occurrence and water quality assessment from an agriculturally influenced Latin-American tropical region. Chemosphere 262:127851

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen JJ, Wiberg-Larsen P, Baattrup-Pedersen A, Kronvang B (2012) Impacts of pesticides and natural stressors on leaf litter decomposition in agricultural streams. Sci Total Environ 16:148–155

    Article  Google Scholar 

  • Schäfer RB (2019) Responses of freshwater macroinvertebrates to pesticides: insights from field studies. Curr Opin Environ Sci Health. https://doi.org/10.1016/j.coesh.2019.06.001

    Article  Google Scholar 

  • Schäfer RB, Caquet T, Siimes K, Mueller R, Lagadic L, Liess M (2007) Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2007.04.040

    Article  PubMed  Google Scholar 

  • Schäfer RB, Pettigrove V, Rose G, Allinson G, Wightwick A, Von Der Ohe PC, Shimeta J, Kühne R, Kefford BJ (2011) Effects of pesticides monitored with three sampling methods in 24 sites on macroinvertebrates and microorganisms. J Environ Sci Technol 45(4):1665–1672

    Article  Google Scholar 

  • Schmera D (2004) Spatial distribution and coexistence patterns of caddisfly larvae (Trichoptera) in a Hungarian stream. Int Rev Hydrobiol 89(1):51–57

    Article  Google Scholar 

  • Spivey A (2011) Rotenone and paraquat linked to Parkinson’s disease: human exposure study supports years of animal studies. Environ Health Perspect 119(6):A259–A259

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumith JA, Hansani PC, Weeraratne TC, Munkittrick KR (2012) Seasonal exposure of fish to neurotoxic pesticides in an intensive agricultural catchment, Uma-oya, Sri Lanka: linking contamination and acetylcholinesterase inhibition. Environ Toxicol Chem. https://doi.org/10.1002/etc.1841

    Article  PubMed  Google Scholar 

  • Sumudumali RG, Jayawardana JM, Piyathilake ID, Randika JL, Udayakumara EP, Gunatilake SK, Malavipathirana S (2021) What drives the pesticide user practices among farmers in tropical regions? A case study in Sri Lanka. Environ Monit Assess 193(12):1–25

    Article  Google Scholar 

  • Thiere G, Schulz R (2004) Runoff-related agricultural impact in relation to macroinvertebrate communities of the Lourens River, South Africa. Water Res 38:3092–3102. https://doi.org/10.1016/j.watres.2004.04.045

    Article  CAS  PubMed  Google Scholar 

  • Thrush SF, Hewitt JE, Hickey CW, Kelly S (2008) Multiple stressor effects identified from species abundance distributions: interactions between urban contaminants and species habitat relationships. J Exp Mar Biol 366(1–2):160–168

    Article  Google Scholar 

  • Touron-Poncet H, Bernadet C, Compin A, Bargier N, Céréghino R (2014) Implementing the Water Framework Directive in overseas Europe: a multimetric macroinvertebrate index for river bioassessment in Caribbean islands. Limnologica. https://doi.org/10.1016/j.limno.2014.04.002

    Article  Google Scholar 

  • Townsend CR, Hildrew AG (1994) Species traits in relation to a habitat templet for river systems. Freshw Biol. https://doi.org/10.1111/j.1365-2427.1994.tb01740.x

    Article  Google Scholar 

  • Townsend C, Doledec S, Scarsbrook M (1997) Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshw Biol 37(2):367–387

    Article  Google Scholar 

  • Turley MD, Bilotta GS, Chadd RP, Extence CA, Brazier RE, Burnside NG, Pickwell AG (2016) A sediment-specific family-level biomonitoring tool to identify the impacts of fine sediment in temperate rivers and streams. Ecol Indic 70:151–165

    Article  Google Scholar 

  • Urbanič G, Toman MJ, Krušnik C (2005) Microhabitat type selection of caddisfly larvae (Insecta: Trichoptera) in a shallow lowland stream. Hydrobiologia 541(1):1–2

    Article  Google Scholar 

  • Usseglio-Polatera P, Bournaud M, Richoux P, Tachet H (2000) Biomonitoring through biological traits of benthic macroinvertebrates: how to use species trait databases? Assessing the ecological integrity of running waters. Springer, pp 153–162. https://doi.org/10.1007/978-94-011-4164-2_12

    Chapter  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol. https://doi.org/10.1016/s1382-6689(02)00126-6

    Article  PubMed  Google Scholar 

  • von der Ohe PC, De Deckere E, Prüß A, Muñoz I, Wolfram G, Villagrasa M, Ginebreda A, Hein M, Brack W (2009) Toward an integrated assessment of the ecological and chemical status of European river basins. Integr Environ Assess Manag 5(1):50–61

    Article  PubMed  Google Scholar 

  • Wallace JB, Whiles MR, Eggert S, Cuffney TF, Lugthart GJ, Chung K (1995) Long term dynamics of coarse particulate organic matter in three Appalachian Mountain streams. J North Am Benthol Soc 14:217–232

    Article  Google Scholar 

  • Wagenhoff A, Townsend CR, Phillips N, Matthaei CD (2011) Subsidy-stress and multiple-stressor effects along gradients of deposited fine sediment and dissolved nutrients in a regional set of streams and rivers. Freshw Biol 56(9):1916–1936

    Article  Google Scholar 

  • Waters TF (1972) The drift of stream insects. Annu Rev Entomol 17(1):253–272

    Article  Google Scholar 

  • Weber G, Christmann N, Thiery A-C, Martens D, Kubiniok J (2018) Pesticides in agricultural headwater streams in southwestern Germany and effects on macroinvertebrate populations. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2018.04.154

    Article  PubMed  PubMed Central  Google Scholar 

  • Wijngaarden RPV, Brock TC, Van Den Brink PJ (2005) Threshold levels for effects of insecticides in freshwater ecosystems: a review. Ecotoxicology. https://doi.org/10.1007/s10646-004-6371-x

    Article  PubMed  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality. World Health Organization, Geneva

    Google Scholar 

  • WHO (2020) The WHO recommended classification of pesticides by hazard and guidelines to classification 2019. World Health Organization, Geneva. https://www.who.int/publications/i/item/9789240005662. Accessed 9 Oct 2020

Download references

Acknowledgements

The authors acknowledge the financial support provided by National Research Council (NRC) of Sri Lanka Grant No. 13-160 for carrying out this research.

Funding

This study was funded by National Research Council (NRC) of Sri Lanka, Grant No. 13-160.

Author information

Authors and Affiliations

Authors

Contributions

JMCKJ helped in research conceptualization and design, acquisition of funds, analysis of data, writing, and final editing of the manuscript; WDTMG contributed to data collection and sample analysis; EPNU acquired the funds; SF assisted in data analysis.

Corresponding author

Correspondence to J. M. C. K. Jayawardana.

Ethics declarations

Ethical approval

No formal ethical approval is required.

Consent to participate

All authors participated and contributed to the study.

Consent for publication

The authors read and approved the final version of the manuscript.

Conflict of interest

All authors declare that they have no conflicts of interest relevant to the content of this article.

Additional information

Handling Editor: Dr. Maria J Feio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: The abundance of macroinvertebrate families in sampling locations.

Appendix 1: The abundance of macroinvertebrate families in sampling locations.

Macroinvertebrate family

Sampling sites

U1

U2

U3

U4

U5

U6

U7

U8

U9

U10

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

Leptophlebiidae

32

14

2

0

9

0

47

19

13

34

35

12

19

7

20

42

8

24

4

139

Baetidae

5

0

0

18

5

0

30

23

0

14

12

6

18

25

24

22

43

37

4

56

Caenidae

0

0

0

0

0

0

0

0

0

1

0

0

1

13

5

2

65

2

5

13

Notonemouridae

3

0

0

0

3

0

0

0

0

0

0

0

1

1

0

2

0

0

0

7

Helicopsyche

0

0

0

13

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

Hydroptilidae

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Hydropsychidae

0

2

0

10

158

0

33

2

27

51

66

3

92

14

6

7

7

3

1

7

Leptoceridae

0

0

0

0

0

0

1

3

0

4

0

0

0

0

0

1

0

0

0

4

Philopotamidae

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

5

0

1

Calomoceridae

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

Odontoeridae

0

0

0

10

0

0

0

0

0

0

0

0

11

9

0

4

7

4

0

13

Aeshinidae

6

0

1

0

0

13

0

0

0

0

0

0

3

1

4

2

0

5

2

7

Synthemistidae

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

3

6

Lestidae

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

Diphlebiidae

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Psephenidae

0

0

0

9

9

0

1

0

0

16

0

0

0

0

0

0

0

0

0

0

Elmidae

0

0

0

23

16

0

5

0

1

6

0

0

3

3

0

0

0

0

0

21

Gyrinidae

0

0

0

0

0

0

0

0

0

2

0

0

8

9

0

4

1

1

0

4

Chironomidae

6

20

0

30

0

7

10

12

13

9

0

0

0

1

0

0

0

0

0

2

Simuliidae

0

22

0

0

0

0

0

3

4

0

18

4

6

12

2

24

26

9

9

0

Psychodidae

3

5

0

6

2

2

9

6

0

1

0

0

0

0

0

0

0

0

0

4

Tipulidae

0

0

0

11

5

0

0

1

0

0

4

4

3

5

0

10

7

7

1

1

Culicidae

0

0

0

0

0

0

0

0

0

0

0

0

1

8

0

1

4

0

2

0

Sciomyzidae

0

0

0

0

0

0

0

0

0

0

6

0

0

0

0

2

0

0

0

0

Lumbricidae

0

0

0

0

0

1

0

0

3

0

0

0

1

0

0

0

0

2

0

0

Atyidae

2

0

0

0

0

0

1

0

0

4

3

0

0

0

0

1

0

1

0

0

Paludomidae

0

0

0

4

0

4

1

38

0

16

0

0

0

0

0

0

0

0

0

0

Thiarinae

0

0

0

0

0

2

0

0

0

1

0

0

1

1

0

0

0

1

0

1

Planorbidae

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

1

0

Pilidae

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayawardana, J.M.C.K., Gunawardana, W.D.T.M., Udayakumara, E.P.N. et al. Biomonitoring of pesticides in agricultural river catchments: a case study from two river catchments in tropical Sri Lanka. Aquat Ecol 57, 337–352 (2023). https://doi.org/10.1007/s10452-023-10013-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-023-10013-1

Keywords

Navigation