Skip to main content
Log in

The importance of herbivory by protists in lakes of a tropical floodplain system

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Inland aquatic ecosystems play a critical role in the global carbon cycle, processing a great fraction of the organic matter coming from terrestrial ecosystems, and the microbial food web is crucial in this process. Thus, we aimed to evaluate whether the food resource of planktonic protozoa comes mainly from small primary producers or heterotrophic bacteria in tropical shallows lakes, assuming the hypothesis that, in general, picocyanobacteria would be the main food resource for protists. We also expected that the autotrophic fraction would be mainly related to protists at the surface of the environments, while the heterotrophic fraction would be more important at the lower strata of the water column. We performed size-fractionation experiments to evaluate the effects of predation of protists on heterotrophic bacteria and picocyanobacteria. We also sampled planktonic organisms at the subsurface and bottom of 20 lakes in a Neotropical floodplain. We found an herbivory preference of heterotrophic flagellates, while ciliates seem to exert a stronger impact on heterotrophic bacteria. We also found no relationship between heterotrophic bacteria and protists in the field data, whereas positive relationships between picocyanobacteria and protists were observed in environments where there was sunlight. Thus, both heterotrophic bacteria and picocyanobacteria were important components in the food webs of tropical shallow lakes. Moreover, the trophic cascade caused by zooplankton predation suggests that protists are efficient in transferring the energy from the base of microbial food webs to higher trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agasild H, Zingel P, Nõges T (2012) Live labeling technique reveals contrasting role of crustacean predation on microbial loop in two large shallow lakes. Hydrobiologia 684:177–187

    Article  CAS  Google Scholar 

  • Agasild H, Zingel P, Karus K, Kangro K, Salujõe J, Nõges T (2013) Does metazooplankton regulate the ciliate community in a shallow eutrophic lake? Freshw Biol 58:183–191

    Article  Google Scholar 

  • Amado AM, Meirelles-Pereira F, Vidal LDO, Sarmento H, Suhett A, Farjalla VF, Cotner JB, Roland F (2013) Tropical freshwater ecosystems have lower bacterial growth efficiency than temperate ones. Front Microbiol 4:1–8

    Article  Google Scholar 

  • Angeler DG, Sánchez-Carrillo S, Rodrigo MA, Viedma O, Alvarez-Cobelas M (2005) On the importance of water depth, macrophytes and fish in wetland picocyanobacteria regulation. Hydrobiologia 549:23–32

    Article  Google Scholar 

  • Arndt H (1993) Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)—a review. In: Rotifer symposium VI. Springer Netherlands, pp 231–246

  • Arndt H, Dietrich D, Auer B, Cleven EJ, Gräfenhan T, Weitere M, Mylnikov AP (2000) Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: Leadbeater BSC, Green JC (eds) The Flagellates. Taylor & Francis Ltd, London, pp 240–268

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Progr Ser 10:257–263

    Article  Google Scholar 

  • Borsheim KY, Bratbak G (1987) Cell volume to carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar Ecol Prog Ser 36:171–175

    Article  Google Scholar 

  • Botrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hilbricht-Ilkowska A, Kurazawa H, Larsson P, Weglenska T (1976) A review of some problems in zooplankton production studies. Norw J Zool 24:419–456

    Google Scholar 

  • Burian A, Schagerl M, Yasindi A (2013) Microzooplankton feeding behaviour: grazing on the microbial and the classical food web of African soda lakes. Hydrobiologia 710:61–72

    Article  CAS  Google Scholar 

  • Callieri C, Karjalainen SM, Passoni S (2002) Grazing by ciliates and heterotrophic nanoflagellates on picocyanobacteria in Lago Maggiore, Italy. J Plankton Res 24:785–796

    Article  Google Scholar 

  • Callieri C, Modenutti B, Queimalinos C, Bertoni R, Balseiro E (2007) Production and biomass of picophytoplankton and larger autotrophs in Andean ultraoligotrophic lakes: differences in light harvesting efficiency in deep layers. Aquatic Ecol 41:511–523

    Article  CAS  Google Scholar 

  • Cheng SH, Aoki S, Maeda M, Hino A (2004) Competition between the rotifer Brachionus rotundiformis and the ciliate Euplotes vannus fed on two different algae. Aquaculture 241:331–343

    Article  Google Scholar 

  • Comte J, Jacquet S, Viboud S, Fontvieille D, Millery A, Paolini G, Domaizon I (2006) Microbial community structure and dynamics in the largest natural French lake (Lake Bourget). Microb Ecol 52:72–89

    Article  PubMed  CAS  Google Scholar 

  • Dobberfuhl DR, Miller R, Elser JJ (1997) Effects of a cyclopoid copepod (Diacyclops thomasi) on phytoplankton and the microbial food web. Aquat Microb Ecol 12:29–37

    Article  Google Scholar 

  • Ducklow HW, Purdie DA, Williams PJL, Davies JM (1996) Bacterioplankton: a sink for carbon in a coastal plankton community. Science 232:865–867

    Article  Google Scholar 

  • Elmoor-Loureiro M (1997) Manual de identificação de cladóceros límnicos do Brasil. Universa, Brasília

    Google Scholar 

  • Farjalla VF, Amado AM, Suhett AL, Meirelles-Pereira F (2009) DOC removal paradigms in highly humic aquatic ecosystems. Environ Sci Pollut R 16:531–538

    Article  CAS  Google Scholar 

  • Fenchel T (1982) Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar Ecol Prog Ser 9:35–42

    Article  Google Scholar 

  • Fenchel T (1986) Protozoan filter feeding. Progr Protisol 1:65–113

    Google Scholar 

  • Fermani P, Diovisalvi N, Torremorell A, Lagomarsino L, Zagarese HE, Unrein F (2013) The microbial food web structure of a hypertrophic warm temperate shallow lake, as affected by contrasting zooplankton assemblages. Hydrobiologia 714:115–130

    Article  CAS  Google Scholar 

  • Foissner W, Berger H (1996) A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes and waste waters, with notes on their ecology. Freshw Biol 35:375–482

    Google Scholar 

  • Foissner W, Berger H, Schaumburg J (1999) Identification and ecology of limnetic plankton ciliates. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft 3:1–793

    Google Scholar 

  • Gasol JM, Vaqué D (1993) Lack of coupling between heterotrophic nanoflagellates and bacteria—a general phenomenon across aquatic systems. Limnol Oceanogr 38:657–665

    Article  Google Scholar 

  • Golterman HL, Clymo RS, Ohmstad MAM (1978) Methods for physical and chemical analysis of fresh water. Blackwell Scientific, Oxford

    Google Scholar 

  • Gonzalez JM, Sherr EB, Sherr BF (1990) Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol 56:583–589

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hahn MW, Höfle MG (2001) Grazing of protozoa and its effect on populations of aquatic bacteria. Microb Ecol 35:113–121

    Article  CAS  Google Scholar 

  • Jack JD, Gilbert JJ (1997) Effects of metazoan predators on ciliates in freshwater plankton communities. J Eukaryot Microbiol 44:194–199

    Article  Google Scholar 

  • Jasser I, Kostrzewska-Szlakowska I (2012) Fading out of the trophic cascade at the base of the microbial food web caused by changes in the grazing community in mesocosm experiments. Oceanol Hydrobiol Stud 41:1–11

    Article  Google Scholar 

  • Jeuck A, Arndt H (2013) A short guide to common heterotrophic flagellates of freshwater habitats based on the morphology of living organisms. Protist 164:842–860

    Article  PubMed  Google Scholar 

  • Jonsson PR, Tiselius P (1990) Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Mar Ecol Prog Ser 60:35–44

    Article  Google Scholar 

  • Jürgens K, Jeppesen E (2000) The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. J Plankton Res 22:1047–1070

    Article  Google Scholar 

  • Jürgens K, Matz C (2002) Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie V Leeuw 81:413–434

    Article  Google Scholar 

  • Kalff J (2002) Limnology. Prentice Hall, New Jersey

    Google Scholar 

  • Karus K, Paaver T, Agasild H, Zingel P (2014) The effects of predation by planktivorous juvenile fish on the microbial food web. Eur J Protistol 50:109–121

    Article  PubMed  Google Scholar 

  • Kisand V, Zingel P (2000) Dominance of ciliate grazing on bacteria during spring in a shallow eutrophic lake. Aquat Microb Ecol 22:135–142

    Article  Google Scholar 

  • Koste W (1978) Rotatoria die Rädertiere Mitteleuropas begründet von Max Voight-Monogononta. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Lampert W (1989) The adaptive significance of diel vertical migration of zooplankton. Functional Ecol 3:21–27

    Article  Google Scholar 

  • Lass S, Spaak P (2003) Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491:221–239

    Article  Google Scholar 

  • Lewis WM Jr (1996) Tropical lakes: how latitude makes a difference. In: Schiemer F, Boland KT (eds) Perspectives in tropical limnology, vol 4364. SPB Academic Publishing, Amsterdam, pp 43–64

    Google Scholar 

  • Li J, Chen F, Liu Z, Zhao X, Yang K, Lu W, Cui K (2016) Bottom-up versus top-down effects on ciliate community composition in four eutrophic lakes (China). Eur J Protistol 53:20–30

    Article  PubMed  Google Scholar 

  • Longmuir A, Shurin JB, Clasen JL (2007) Independent gradients of producer, consumer, and microbial diversity in lake plankton. Ecology 88:1663–1674

    Article  PubMed  Google Scholar 

  • Mackereth FYH, Heron J, Talling JJ (1978) Water analysis: some revised methods for Limnologists. Freshw Biol Assoc 36:1–120

    Google Scholar 

  • Madoni P (1984) Estimation of the size of freshwater ciliate populations by a subsampling technique. Hydrobiologia 111:201–206

    Article  Google Scholar 

  • Meira BR, Lansac-Tôha FM, Segovia BT, Oliveira FR, Buosi PRB, Jati S, Rodrigues LC, Lansac-Tôha FA, Velho LFM (2017) Abundance and size structure of planktonic protist communities in a Neotropical floodplain: effects of top-down and bottom-up controls. Acta Limnol Bras 29:e104

    Article  Google Scholar 

  • Michels E, De Meester L (1998) The influence of food quality on the phototactic behaviour of Daphnia magnaStraus. Hydrobiologia 379:199–206

    Article  Google Scholar 

  • Mieczan T, Adamczuk M, Pawlik-Skowrońska B, Toporowska M (2015a) Eutrophication of peatbogs: consequences of P and N enrichment for microbial and metazoan communities in mesocosm experiments. Aquat Microb Ecol 74:121–141

    Article  Google Scholar 

  • Mieczan T, Niedźwiecki M, Adamczuk M, Bielańska-Grajner I (2015b) Stable isotope analyses revealed high seasonal dynamics in the food web structure of a peatbog. Int Rev Hydrobiol 100:141–150

    Article  Google Scholar 

  • Mitchell GC, Baker JH, Sleigh MA (1988) Feeding of a freshwater flagellate, Bodo saltans, on diverse bacteria. J Protozool 35:219–222

    Article  Google Scholar 

  • Montagnes DJS, Morgan G, Bissinger JE, Atkinson D, Weisse T (2008) Short-term temperature change may impact freshwater carbon flux: a microbial perspective. Glob Chan Biol 14:2810–2822

    Article  Google Scholar 

  • Montemezzani V, Duggan IC, Hogg ID, Craggs RJ (2015) A review of potential methods for zooplankton control in wastewater treatment high rate algal ponds and algal production raceways. Algal Res 11:211–226

    Article  Google Scholar 

  • Müller H, Geller W (1993) Maximum growth rates of aquatic ciliates protozoa: the dependence on body size and temperature reconsidered. Arch Hydrobiol 126:315–327

    Google Scholar 

  • Norland S (1993) The relationship between biomass and volume of bacteria. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publishers, New York, pp 303–307

    Google Scholar 

  • Ohno H, Yoshinari E, Sato-Okoshi W, Nishitani G (2013) Feeding and growth characteristics of a diatom-feeding flagellate isolated from the bottom sediment of Onagawa Bay, Northeastern Japan. J Mar Sci 3:9–14

    Google Scholar 

  • Okada M, Taniuchi Y, Murakami A, Takaichi S, Ohtake S, Ohki K (2007) Abundance of picophytoplankton in the halocline of a meromictic lake, Lake Suigetsu, Japan. Limnology 8:271–280

    Article  CAS  Google Scholar 

  • Palijan G (2017) Short-term response of the phytoplankton size structure to flooding. Inland Waters 7:192–199

    Article  Google Scholar 

  • Pauleto GM, Velho LFM, Buosi PRB, Brão AFS, Lansac-Tôha FA, Bonecker CC (2009) Spatial and temporal patterns of ciliate species composition (Protozoa: Ciliophora) in the plankton of the Upper Paraná River floodplain. Braz J Biol 69:517–527

    Article  PubMed  CAS  Google Scholar 

  • Pauleto GM, Oliveira FRD, Segovia BT, Meira BR, Lansac-Tôha F, Buosi PRB, Velho LFM (2017) Intra-annual variation in planktonic ciliate species composition (Protista: Ciliophora) in different strata in a shallow floodplain lake. Acta Limnol Bras 29:e107

    Article  Google Scholar 

  • Pernthaler J, Šimek K, Sattler B, Schwarzenbacher A, Bobkova J, Psenner R (1996) Short-term changes of protozoan control on autotrophic picoplankton in an oligo-mesotrophic lake. J Plankton Res 18:443–462

    Article  Google Scholar 

  • Picapedra PHS, Lansac-Tôha FA, Bialetzki A (2015) Diel vertical migration and spatial overlap between fish larvae and zooplankton in two tropical lakes, Brazil. Braz J Biol 75:352–361

    Article  PubMed  CAS  Google Scholar 

  • Pirlot S, Unrein F, Descy JP, Servais P (2007) Fate of heterotrophic bacteria in Lake Tanganyika (East Africa). Microbiol Ecol 62:354–364

    Article  CAS  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Posch T, Pernthaler J, Alfreider A, Psenner R (1997) Cell-specific respiratory activity of aquatic bacteria studied with the tetrazolium reduction method, cyto-clear slides, and image analysis. Appl Environ Microbiol 63:867–873

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ptacnik R, Sommer U, Hansen T, Martens V (2004) Effects of microzooplankton and mixotrophy in an experimental planktonic food web. Limnol Oceanogr 49:1435–1445

    Article  Google Scholar 

  • Reguera B (1984) The effect of ciliate contamination in mass cultures of the rotifer, Brachionus plicatilis OF Müller. Aquaculture 40:103–108

    Article  Google Scholar 

  • Reid JW (1985) Chave de identificação e lista de referências bibliograficas para as espécies continentais sulamericanas de vida livre da ordem Cyclopoida (Crustacea, Copepoda). Bol Zool 9:17–143

    Article  Google Scholar 

  • Reynolds CS (1980) Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarct Ecol 3:141–159

    Google Scholar 

  • Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Reynolds CS (2006) The Ecology of Phytoplankton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rothhaupt K (1990) Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Limnol Oceanogr 35:16–23

    Article  Google Scholar 

  • Sanders RW, Caron DA, Berninger UG (1992) Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters-an inter-ecosystem comparison. Mar Ecol Prog Ser 86:1–14

    Article  Google Scholar 

  • Sarmento H (2012) New paradigms in tropical limnology: the importance of the microbial food web. Hydrobiologia 686:1–14

    Article  Google Scholar 

  • Sarmento H, Unrein F, Isumbisho M, Stenuite S, Gasol JM, Descy JP (2008) Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa. Freshw Biol 53:756–771

    Article  Google Scholar 

  • Scheffer M, Jeppesen E (1998) Alternative stable states. In: Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes. Springer, New York, pp 91–114

    Google Scholar 

  • Segovia BT, Pereira DG, Bini LM, Velho LFM (2014) Effects of bottom-up and top-down controls on the temporal distribution of planktonic heterotrophic nanoflagellates are dependent on water depth. Hydrobiologia 736:155–164

    Article  CAS  Google Scholar 

  • Segovia BT, Pereira DG, Bini LM, Meira BR, Nishida VS, Lansac-Tôha FA, Velho LFM (2015) The role of microorganisms in a planktonic food web of a floodplain lake. Microb Ecol 69:225–233

    Article  PubMed  Google Scholar 

  • Segovia BT, Domingues CD, Meira BR, Lansac-Toha FM, Fermani P, Unrein F, Lobão LM, Roland F, Velho LFM, Sarmento H (2016) Coupling between heterotrophic nanoflagellates and bacteria in fresh waters: Does latitude make a difference? Front Microbiol 7:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Segovia BT, Meira BR, Lansac-Toha FM, Amadeo FE, Unrein F, Velho LFM, Sarmento H (2018) Growth and cytometric diversity of bacterial assemblages under different top–down control regimes by using a size-fractionation approach. J Plankton Res 0:1–13

  • Sherr EB, Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325:710–711

    Article  Google Scholar 

  • Sherr EB, Sherr BF (1988) Role of microbes in pelagic food webs: a revised concept. Limnol Oceanogr 33:1225–1227

    Article  Google Scholar 

  • Sherr EB, Sherr BF (1993) Preservation and storage of samples for enumeration of heterotrophic protists. In: Kemp P, Sherr BF, Sherr EB, Cole J (eds) Current methods in aquatic microbial ecology. Lewis Publishers, New York, pp 207–212

    Google Scholar 

  • Sherr EB, Sherr BF (1994) Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb Ecol 28:223–235

    Article  PubMed  CAS  Google Scholar 

  • Šimek K, Chrzanowski TH (1992) Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl Environ Microb 58:3715–3720

    Google Scholar 

  • Šimek K, Straškrabová V (1992) Bacterioplankton production and protozoan bacterivory in a mesotrophic reservoir. J Plankton Res 14:773–787

    Article  Google Scholar 

  • Šimek K, Macek M, Pernthaler J, Straskrabová V, Psenner R (1996) Can freshwater planktonic ciliates survive on a diet of picoplankton? J Plankton Res 18:597–613

    Article  Google Scholar 

  • Šimek K, Babenzien D, Bitl T, Koschel R, Macek M, Nedoma J, Vrba J (1998) Microbial food webs in an artificially divided acidic bog lake. Int Rev Hydrobiol 83:3–18

    Article  Google Scholar 

  • Sonntag B, Summerer M, Sommaruga R (2011) Factors involved in the distribution pattern of ciliates in the water column of a transparent alpine lake. J Plankton Res 33:541–546

    Article  Google Scholar 

  • Stenuite S, Pirlot S, Tarbe AL, Sarmento H, Lecomte M, Thill S, Leporcq B, Sinyinza D, Descy JP, Servais P (2009) Abundance and production of bacteria, and relationship to phytoplankton production, in a large tropical lake (Lake Tanganyika). Freshw Biol 54:1300–1311

    Article  CAS  Google Scholar 

  • Tadonleké R, Pinel-Alloul B, Bourbonnais N, Pick FR (2004) Factors affecting the bacteria-heterotrophic nanoflagellate relationship in oligo–mesotrophic lakes. J Plankton Res 26:681–695

    Article  Google Scholar 

  • Tarbe AL, Unrein F, Stenuite S, Pirlot S, Sarmento H, Sinyinza D, Descy JP (2011) Protist herbivory: a Key pathway in the pelagic food web of lake Tanganyika. Microb Ecol 62:314–323

    Article  PubMed  Google Scholar 

  • Thomaz SM, Bini LM, Bozelli RL (2007) Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579:1–13

    Article  Google Scholar 

  • Unrein F, Massana R, Alonso-Sáez L, Gasol JM (2007) Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnol Oceanogr 52:456–469

    Article  Google Scholar 

  • Verity PG (1988) Chemosensory behavior in marine planktonic ciliates. Bull Mar Sci 43:772–782

    Google Scholar 

  • Waterbury JB, Watson SW, Valois FW, Franks D (1986) Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can Bull Fish Aquat Sci 214:71–120

    Google Scholar 

  • Weisse T (1993) Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In: Jones JG (ed) Advances in microbial ecology. Plenum Press, New York, pp 327–370

    Chapter  Google Scholar 

  • Weisse T (2002) The significance of inter- and intraspecific variation in bacterivorous and herbivorous protists. A Van Leeuw 81:327–341

    Article  Google Scholar 

  • Weisse T, Frahm A (2002) Direct and indirect impact of two common rotifer species (Keratella spp.) on two abundant ciliate species (Urotricha furcata, Balanion planctonicum). Freshw Biol 47:53–64

    Article  Google Scholar 

  • Weisse T, Anderson R, Arndt H, Calbet A, Hansen PJ, Montagnes DJ (2016) Functional ecology of aquatic phagotrophic protists—concepts, limitations, and perspectives. Eur J Protistol 55:50–74

    Article  PubMed  Google Scholar 

  • Wickham SA (1995) Trophic relations between cyclopoid copepods and ciliated protists: complex interactions link the microbial and classic food webs. Limnol Oceanogr 40:1173–1181

    Article  Google Scholar 

  • Wieltschnig C, Wihlidal P, Ulbricht T, Kirschner AKT, Velimirov B (1999) Low control of bacterial production by heterotrophic nanoflagellates in a eutrophic backwater environment. Aquat Microb Ecol 17:77–89

    Article  Google Scholar 

  • Wieltschnig C, Kirschner AKT, Steitz A, Velimirov B (2001) Weak coupling between heterotrophic nanoflagellates and bacteria in a eutrophic freshwater environment. Microb Ecol 42:159–167

    PubMed  CAS  Google Scholar 

  • Zingel P, Agasild H, Noges T, Kisand V (2007) Ciliates are the dominant grazers on pico-and nanoplankton in a shallow, naturally highly eutrophic lake. Microb Ecol 53:134–142

    Article  PubMed  Google Scholar 

  • Zingel P, Agasild H, Karus K, Kangro K, Tammert H, Tõnno I, Feldmann T, Nõges T (2016) The influence of zooplankton enrichment on the microbial loop in a shallow, eutrophic lake. Eur J Protistol 52:22–35

    Article  PubMed  Google Scholar 

  • Zöllner E, Santer B, Boersma M, Hoppe HG, Jürgens K (2003) Cascading predation effects of Daphnia and copepods on microbial food web components. Freshw Biol 48:2174–2193

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupelia) and the Graduate Program in Ecology of Continental Aquatic Environments for logistical support. This project is part of the Long-Term Ecological Project (LTER)—The Upper Paraná River floodplain: structure and environmental processes—supported by the Brazilian National Research Council (CNPq). BRM, FALT, LFMV also have their researches continuously supported by CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianca Ramos Meira.

Additional information

Handling Editor: Piet Spaak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meira, B.R., Lansac-Toha, F.M., Segovia, B.T. et al. The importance of herbivory by protists in lakes of a tropical floodplain system. Aquat Ecol 52, 193–210 (2018). https://doi.org/10.1007/s10452-018-9654-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-018-9654-7

Keywords

Navigation