Skip to main content
Log in

The microbial food web structure of a hypertrophic warm-temperate shallow lake, as affected by contrasting zooplankton assemblages

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The composition of zooplankton is known to affect the structure of the microbial trophic web. The zooplankton of the hypertrophic Laguna Chascomús (Argentina) is generally dominated by rotifers and cyclopoids copepods. An unusual dominance by small-cladocerans was observed after a massive winter fish kill in 2007. We hypothesized that small-cladocerans would increase the grazing pressure on heterotrophic flagellates (HF), reducing the degree of coupling between HF and picoplankton. The aim of this study was to investigate the microbial food web structure under two contrasting zooplankton assemblages. The lake was sampled every other week between 2007 and 2009. The abundances of heterotrophic bacteria (HB) and picocyanobacteria (Pcy) laid among the highest values reported for aquatic systems (>108 and 107 cells ml−1, respectively). Pcy averaged 53% of total picoplanktonic biomass. When small-cladocerans dominated zooplankton HF reached the higher abundance (>105 cells ml−1) and picoplankton showed the opposite pattern, while the proportion of grazing resistant morphologies (i.e. microaggregates of Pcy) was higher. In contrast, when rotifers dominated, HF abundance decreased and picoplankton increased. Our data suggest that the degree of HF–HB coupling was affected by changes in zooplankton dominance. In contrast to our initial hypothesis, the present results suggest that large numbers of rotifers (>5,000 ind. l−1) are more efficient than small-cladocerans at controlling HF populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC, USA.

    Google Scholar 

  • Arndt, H., 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) – a review. Hydrobiologia 255: 231–246.

    Article  Google Scholar 

  • Arndt, H., D. Dietrich, B. Auer, E. J. Cleven, T. Gräfenhan & M. Weitere, 2000. Functional diversity of heterotrophic flagellates in aquatic ecosystems. In Leadbeater, B. S. C. & J. C. Green (eds), The Flagellates. Taylor & Francis, London, UK: 240–268.

    Google Scholar 

  • Auer, B. & H. Arndt, 2001. Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy and season. Freshwater Biology 46(7): 959–972.

    Article  Google Scholar 

  • Berninger, U., S. Wickham & B. L. Finlay, 1993. Trophic coupling within the microbial food web: a study with fine temporal resolution in a eutrophic freshwater ecosystem. Freshwater Biology 30: 419–432.

    Article  Google Scholar 

  • Blom, J. F., K. Hornák, K. Šimek & J. Pernthaler, 2010. Aggregate formation in a freshwater bacterial strain induced by growth state and conspecific chemical cues. Environmental Microbiology 12(9): 2486–2495.

    Article  PubMed  CAS  Google Scholar 

  • Boenigk, J. & H. Arndt, 2002. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie van Leeuwenhoek 81: 465–480.

    Article  PubMed  Google Scholar 

  • Boveri, M. & R. Quirós, 2007. Cascading trophic effects in pampean shallow lakes: results of a mesocosm experiment using two coexisting fish species with different feeding strategies. Hydrobiologia 584: 215–222.

    Article  Google Scholar 

  • Burian, A., M. Schagerl & A. Yasindi, 2012. Microzooplankton feeding behaviour: grazing on the microbial and the classical food web of African soda lakes. Hydrobiologia. DOI: 10.1007/s10750-012-1023-2.

  • Callieri, C., 2007. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwater Reviews 1: 1–28.

    Google Scholar 

  • Calllieri, C., 2010. Single cells and microcolonies of freshwater picocyanobacteria: a common ecology. Journal of Limnology 69: 257–277.

    Article  Google Scholar 

  • Callieri, C. & M. L. Pinolini, 1995. Picoplankton in Lake Maggiore, Italy. International Revue der gesamten Hydrobiologie 80: 491–501.

    Article  Google Scholar 

  • Callieri, C., S. M. Karjalainen & S. Passoni, 2002. Grazing by ciliates and heterotrophic nanoflagellates on picocyanobacteria in Lago Maggiore, Italy. Journal of Plankton Research 24: 785–796.

    Article  Google Scholar 

  • Carrick, H. J. & C. L. Schelske, 1997. Have we overlooked the importance of small phytoplankton in productive waters? Limnology and Oceanography 42(7): 1613–1621.

    Article  CAS  Google Scholar 

  • Chen, M., F. Chen, B. Zhao, Q. L. Wu & F. Kong, 2010. Seasonal variation of microbial eukaryotic community composition in the large, shallow, subtropical Taihu Lake, China. Aquatic Ecology 44: 1–12.

    Article  CAS  Google Scholar 

  • Christaki, U., A. Giannakourou, F. Van Wambeke & G. Grégori, 2001. Nanoflagellate predation on auto- and heterotrophic picoplankton in the oligotrophic Mediterranean Sea. Journal of Plankton Research 23: 1297–1310.

    Article  Google Scholar 

  • Christoffersen, K., 1994. Variation of feeding activities of heterotrophic nanoflagellates on picoplankton. Marine Microbial Food Webs 8: 111–123.

    Google Scholar 

  • Chrzanowski, T. H. & K. Šimek, 1990. Prey-size selection by freshwater flagellated protozoa. Limnology and Oceanography 35: 1424–1436.

    Article  Google Scholar 

  • Crosbie, N. D., K. Teubner & T. Weisse, 2003. Flow-cytometric mapping provides novel insights into the seasonal and vertical distributions of freshwater autotrophic picoplankton. Aquatic Microbial Ecology 33: 53–66.

    Article  Google Scholar 

  • Dangavs, N. V., 1976. Descripción sistemática de los parámetros morfométricos considerados en las lagunas pampásicas. Limnobios 1: 35–59.

    Google Scholar 

  • Diovisalvi, N., G. Berasain, F. Unrein, D. Colautti, P. Fermani, M. Llames, A. Torremorell, L. Lagomarsino, G. Pérez, R. Escaray, J. Bustingorry, M. Ferraro & H. Zagarese, 2010. Chascomús: estructura y funcionamiento de una laguna pampeana turbia. Ecología Austral 20: 115–127.

    Google Scholar 

  • Dolan, J. R. & C. L. Gallegos, 1991. Trophic coupling of rotifers, microflagellates, and bacteria during fall months in the Rhode River estuary. Marine Ecology Progress Series 77: 147–156.

    Article  Google Scholar 

  • Ducklow, H. W., D. A. Purdie, P. J. L. Williams & J. M. Davies, 1986. Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science 232: 865–867.

    Article  PubMed  CAS  Google Scholar 

  • Eiler, A. & S. Bertilsson, 2004. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environmental Microbiology 6: 1228–1243.

    Article  PubMed  Google Scholar 

  • Finlay, B. J. & G. F. Esteban, 1998. Freshwater protozoa: biodiversity and ecological function. Biodiversity Conservation 7: 1163–1186.

    Article  Google Scholar 

  • Gannon, M. J., 1971. Two counting cells for the enumeration of zooplankton micro-Crustacea. Transactions of the American Microscopical Society 90: 486–490.

    Article  Google Scholar 

  • Gasol, J. M., 1994. A framework for the assessment of top-down vs bottom-up control of heterotrophic nanoflagellate abundance. Marine Ecology Progress Series 113: 291–300.

    Article  Google Scholar 

  • Gasol, J. M., A. M. Simons & J. Kalff, 1995. Patterns in the top-down versus bottom-up regulation of heterotrophic nanoflagellates in temperate lakes. Journal of Plankton Research 17: 1879–1903.

    Article  Google Scholar 

  • Hahn, M. W. & G. Höfle, 2001. Grazing of protozoa and its effects on population of aquatic bacteria. FEMS Microbiology Ecology 35: 113–121.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, M. W., E. R. B. Moore & M. G. Höfle, 1999. Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate controlled in bacteria of different phyla. Applied and Environmental Microbiology 65(1): 25–35.

    PubMed  CAS  Google Scholar 

  • Havens, K. E., A. C. Elia, M. I. Taticchi & R. S. Fulton, 2009. Zooplankton–phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy). Hydrobiologia 628(1): 165–175.

    Article  CAS  Google Scholar 

  • Hessen, D. O., 2006. Determinants of seston C:P-ratio in lakes. Freshwater Biology 51: 1560–1569.

    Article  CAS  Google Scholar 

  • Hirose, M., Y. Nishibe, M. Ueki & S.-i. Nakano, 2003. Seasonal changes in the abundance of autotrophic picoplankton and some environmental factors in hypereutrophic Furuike Pond. Aquatic Ecology 37: 37–43.

    Article  Google Scholar 

  • Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. M. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. García-Alonso, S. L. Amsinck, J. C. Paggi, S. José de Paggi & E. Jeppesen, 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147.

    Article  Google Scholar 

  • Iriondo, M. H. & E. C. Drago, 2004. The headwater hydrographic characteristics of large plains: the Pampa case. Ecohydrology & Hydrobiology 4: 7–16.

    Google Scholar 

  • Izaguirre, I., R. Sinistro, M. R. Schiaffino, M. L. Sánchez, F. Unrein & R. Massana, 2012. Grazing rates of protists in wetlands under contrasting light conditions due to free-floating plants. Aquatic Microbial Ecology 65: 221–232.

    Article  Google Scholar 

  • Jezberová, J. & J. Komárková, 2007. Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environmental Microbiology 9: 1858–1862.

    Article  PubMed  Google Scholar 

  • José de Paggi, S., 1994. Zooplancton del río Paraná: microcrustáceos y material inorgánico en suspensión. Master Thesis, Universidad Nacional del Litoral, Santa Fé, Argentina.

  • Jürgens, K. & E. Jeppesen, 2000. The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. Journal of Plankton Research 22: 1047–1070.

    Article  Google Scholar 

  • Jürgens, K. & C. Matz, 2002. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie van Leeuwenhoek 81: 413–434.

    Article  PubMed  Google Scholar 

  • Jürgens, K. & G. Stolpe, 1995. Seasonal dynamics of crustacean zooplankton, heterotrophic nanoflagellates and bacteria in a shallow, eutrophic lake. Freshwater Biology 33: 27–38.

    Article  Google Scholar 

  • Jürgens, K., S. A. Wickham, K. O. Rothhaupt & B. Santer, 1996. Feeding rates of macro and microzooplankton on heterotrophic nanoflagellates. Limnology and Oceanography 41: 1833–1839.

    Article  Google Scholar 

  • Kilham, P., 1981. Pelagic bacteria: extreme abundances in african saline lakes. Naturwissenshaften 68: 380–381.

    Article  Google Scholar 

  • Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. Ein Bestimmungswerk begründet von Max Voigt. 2 Aufl. 2 Vols. Bornträger, Berlin.

    Google Scholar 

  • Köthe, A. & J. Benndorf, 1994. Top-down impact of Daphnia galeata on pelagic heterotrophic flagellates in a whole lake biomanipulation experiment. Marine Microbial Food Webs 8: 325–335.

    Google Scholar 

  • Kranewitter, A. V., 2010. Estudio intensivo de la dinámica temporal del picoplancton de la laguna Chascomús. B.Sc. Thesis, University of Buenos Aires, Argentina.

  • Lagomarsino, L., G. Pérez, R. Escaray, J. Bustingorry & H. Zagarese, 2011. Weather variables as drivers of seasonal phosphorus dynamics in a shallow hypertrophic lake (Laguna Chascomús, Argentina). Fundamental and Applied Limnology 178: 191–201.

    Article  Google Scholar 

  • Llames, M., L. Lagomarsino, N. Diovisalvi, P. Fermani, A. Torremorell, G. Pérez, F. Unrein, J. Bustingorry, R. Escaray, M. Ferraro & H. Zagarese, 2009. The effects of different degrees of light availability in shallow, turbid waters: a mesocosm study. Journal of Plankton Research 31: 1517–1529.

    Article  Google Scholar 

  • Lopretto, E. & G. Tell, 1995. Ecosistemas de aguas continentales. Metodologías para su uso. Tomo I. Ediciones Sur, La Plata.

    Google Scholar 

  • Macek, M., D. Pestová & M. E. Martínez Pérez, 2008. Dinámica temporal y espacial de la comunidad de ciliados en un lago monomíctico-cálido Alchichica (Puebla, México). Hidrobiológica 18.1: 25–35.

    Google Scholar 

  • Menden-Deuer, S. & E. J. Lessard, 2000. Carbon to volume relationship for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45: 569–579.

    Article  CAS  Google Scholar 

  • Nakano, S., N. Ishii, P. M. Manage & Z. Kawabata, 1998. Trophic roles of heterotrophic nanoflagellates and ciliates among planktonic organisms in a hypereutrophic pond. Aquatic Microbial Ecology 16: 153–161.

    Article  Google Scholar 

  • Passoni, S. & C. Callieri, 2001. Picocyanobacteria single forms, aggregates and microcolonies: survival strategy or species succession? Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 27: 1879–1883.

    Google Scholar 

  • Pennak, R. W., 1989. Fresh-Water Invertebrates of the United States: Protozoa to Mollusca. John Wiley & Sons, New York, USA.

    Google Scholar 

  • Pérez, G., M. Llames, L. Lagomarsino & H. Zagarese, 2011. Seasonal variability of optical properties in a highly turbid lake (Laguna Chascomús, Argentina). Photochemistry and Photobiology 87: 659–670.

    Article  PubMed  Google Scholar 

  • Pernthaler, J., 2005. Predation on prokaryotes in the water column and its ecological implications. Nature Reviews Microbiology 3: 537–546.

    Article  PubMed  CAS  Google Scholar 

  • Pernthaler, J., B. Sattler, K. Šimek, A. Schwarzenbacher & R. Psenner, 1996. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquatic Microbial Ecology 10: 255–263.

    Article  Google Scholar 

  • Pontin, R. M., 1978. A Key to British Freshwater Planktonic Rotifera. Scientific Publication no 38. Freshwater Biological Association, Ambleside, UK.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Article  Google Scholar 

  • Reid, J. W., 1985. Chave de identificação e lista de referências bibliográficas para as espécies continentais sulamericanas de vida livre da ordem Cyclopoida (Crustacea, Copepoda). Universidad de Sao Paulo. Boletim de Zoologia da Universidade de São Paulo 9: 17–143.

    Google Scholar 

  • Rennella, A. M. & R. Quirós, 2006. The effects of hydrology on plankton biomass in shallow lakes of the Pampa Plain. Hydrobiologia 556: 181–191.

    Article  Google Scholar 

  • Ruttner-Kolisko, A., 1974. Plankton rotifers: biology and taxonomy. E.Schweizerbart’sche Verlagsbuchhandlung Stuttgart, Die Binnengewässer 26: 1–146.

    Google Scholar 

  • Sakka, A., L. Legendre, M. Gosselin & B. Delesalle, 2000. Structure of the oligotrophic planktonic food web under low grazing of heterotrophic bacteria: Takapoto Atoll, French Polynesia. Marine Ecology Progress Series 197: 1–17.

    Article  Google Scholar 

  • Sanders, R. W. & S. A. Wickham, 1993. Planktonic protozoa and metazoa: predation, food quality and population control. Marine Microbial Food Webs 7: 197–223.

    Google Scholar 

  • Sanders, R. W., D. A. Caron & U. G. Berninger, 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Marine Ecology Progress Series 86: 1–14.

    Article  Google Scholar 

  • Sanders, R. W., D. A. Leeper, C. H. King & K. G. Porter, 1994. Grazing by rotifers and crustacean zooplankton on nanoplanktonic protists. Hydrobiologia 288: 167–181.

    Article  Google Scholar 

  • Sarmento, H., 2012. New paradigms in tropical limnology: the importance of the microbial food web in tropical lakes. Hydrobiologia 686(1): 1–14.

    Article  Google Scholar 

  • Sarmento, H., F. Unrein, M. Isumbisho, S. Stenuite, J. M. Gasol & J. P. Descy, 2008. Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa. Freshwater Biology 53: 756–771.

    Article  Google Scholar 

  • Sharp, J. H., 1993. Procedures subgroup report. Marine Chemistry 41: 37–49.

    Article  CAS  Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 1993. Preservation and storage of samples for enumeration of heterotrophic protists. In Kemp, P., B. F. Sherr, E. B. Sherr & J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis, Boca Raton, FL: 207–227.

    Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 1994. Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microbial Ecology 28: 223–235.

    Article  Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 2002. Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek 81: 293–308.

    Article  PubMed  CAS  Google Scholar 

  • Sieburth, J. Mc. N., V. Smetacek & J. Lenz, 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnology and Oceanography 23: 1256–1263.

    Article  Google Scholar 

  • Sierra, E. M., M. E. Fernández Long & C. Bustos, 1994. Cronologías de inundaciones y sequías en el noreste de la provincia de Buenos Aires 1911–89. Revista de la Facultad de Agronomía 14: 241–249.

    Google Scholar 

  • Šimek, K., P. Hartman, J. Nedoma, J. Pernthaler, D. Springmann, J. Vrba & R. Psenner, 1997. Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquatic Microbial Ecology 12: 49–63.

    Article  Google Scholar 

  • Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 51: 201–213.

    Article  CAS  Google Scholar 

  • Sommaruga, R., 1995. Microbial and classical food webs: a visit to a hypertrophic lake. Microbial Ecology 17: 257–270.

    Article  CAS  Google Scholar 

  • Sommer, U. & F. Sommer, 2006. Cladocerans versus copepods: the cause of contrasting top–down controls on freshwater and marine phytoplankton. Oecologia 147: 183–194.

    Article  PubMed  Google Scholar 

  • Stenuite, S., A. L. Tarbe, H. Sarmento, F. Unrein, S. Pirlot, D. Sinyinza, S. Thill, M. Lecomte, B. Leporcq, J. M. Gasol & J. P. Descy, 2009. Photosynthetic picoplankton in Lake Tanganyika: biomass distribution patterns with depth, season and basin. Journal of Plankton Research 31: 1531–1544.

    Article  CAS  Google Scholar 

  • Tadonléké, R. D., B. Pinel-Alloul, N. Bourbonnais & F. R. Pick, 2004. Factors affecting the bacteria–heterotrophic nanoflagellates relationship in oligo-mesotrophic lakes. Journal of Plankton Research 26(6): 681–695.

    Article  Google Scholar 

  • Tarbe, A. L., F. Unrein, S. Stenuite, S. Pirlot, H. Sarmento, D. Sinyinza & J. P. Descy, 2011. Protist herbivory: a key pathway in the pelagic food web of Lake Tanganyika. Microbial Ecology 62: 314–323.

    Article  PubMed  Google Scholar 

  • Teixeira de Mello, F., M. Meeroff, Z. Pekcan-Hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.

    Article  CAS  Google Scholar 

  • Thelaus, J., M. Forsman & A. Andersson, 2008. Role of productivity and protozoan abundance for the occurrence of predation-resistant bacteria in aquatic systems. Microbial Ecology 56(1): 18–28.

    Article  PubMed  Google Scholar 

  • Tijdens, M., H. L. Hoogveld, M. P. Kamst-van Agterveld, S. G. H. Simis, A.-C. Baudoux, H. J. Laanbroek & H. J. Gons, 2008. Population dynamics and diversity of viruses, bacteria and phytoplankton in a shallow eutrophic lake. Microbial Ecology 56: 29–42.

    Article  PubMed  Google Scholar 

  • Torremorell, A., J. Bustigorry, R. Escaray & H. Zagarese, 2007. Seasonal dynamics of a large, shallow lake, laguna Chascomús: the role of light limitation and other physical variables. Limnologica 37: 100–108.

    Article  CAS  Google Scholar 

  • Torremorell, A., M. Llames, G. Pérez, R. Escaray, J. Bustingorry & H. Zagarese, 2009. Annual patterns of phytoplankton density and primary production in a large, shallow lake: the central role of light. Freshwater Biology 54: 437–449.

    Article  Google Scholar 

  • Tsai, A. Y., K. P. Chiang, Y. F. Chan, Y. C. Lin & J. Chang, 2007. Pigmented nanoflagellates in the coastal western subtropical Pacific are important grazers on Synechococcus populations. Journal of Plankton Research 29: 71–77.

    Article  Google Scholar 

  • Vaqué, D., J. Gasol & C. Marrasé, 1994. Grazing rates on bacteria: the significance of methodology and ecological factors. Marine Ecology Progress Series 109: 263–274.

    Article  Google Scholar 

  • Weisse, T., H. Müller, R. M. Pinto-Coelho, A. Schweizer, D. Springmann & G. Baldringer, 1990. Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnology and Oceanography 35: 781–794.

    Article  Google Scholar 

  • White, P., J. Kalff, J. Rasmussen & J. Gasol, 1991. The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microbial Ecology 21: 99–118.

    Article  Google Scholar 

  • Wieltschnig, C., A. Kirschner, A. Steitz & B. Velimirov, 2001. Weak coupling between heterotrophic nanoflagellates and bacteria in a eutrophic freshwater environment. Microbial Ecology 42: 159–167.

    PubMed  CAS  Google Scholar 

  • Worden, A., 2004. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnology and Oceanography 49: 168–179.

    Article  CAS  Google Scholar 

  • Zhang, H. & B. Singer, 1999. Recursive Partitioning in the Health Sciences. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Zölner, E., B. Santer, M. Boersma, H. G. Hoppe & K. Jürgens, 2003. Cascading predation effects of Daphnia and copepods on microbial food web components. Freshwater Biology 48: 2174–2193.

    Article  Google Scholar 

Download references

Acknowledgments

We thank José Bustingorry and Roberto Escaray for field assistance, Don Morris for DOC analyses, Cecilia Buñirigo for counting filamentous HB and Josep M. Gasol for sharing the original data set from Gasol (1994). We would also like to thank M. Meerhoff and the four anonymous reviewers for their detailed and constructive comments, which greatly improved the quality of this article. This work was supported by UNSAM (SC08/043), CONICET (PIP 01301; PIP 00700; the Argentinean network for the assessment and monitoring of Pampean shallow-lakes—PAMPA2), CONICET-CSIC (PROBA), ANPCyT (PICT 25325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Unrein.

Additional information

Handling editor: Mariana Meerhoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fermani, P., Diovisalvi, N., Torremorell, A. et al. The microbial food web structure of a hypertrophic warm-temperate shallow lake, as affected by contrasting zooplankton assemblages. Hydrobiologia 714, 115–130 (2013). https://doi.org/10.1007/s10750-013-1528-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1528-3

Keywords

Navigation