Skip to main content
Log in

Distribution and microhabitat associations of the juveniles of a high-value sea cucumber, Stichopus cf. horrens, in northern Philippines

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

There is considerable global interest in rebuilding depleted populations of sea cucumbers (Echinodermata, Holothuroidea) to address conservation and economic goals. For the vast majority of holothurian species, the habitat and food requirements of the juvenile stage are poorly understood. We investigated the distribution and microhabitat associations of juveniles of a commercially important sea cucumber, Stichopus cf. horrens, in the shallow, shoreward side of a coral reef (or backreef) in northern Philippines (16°21′38.7″N, 119°59′47.9″E). Relationships between juvenile density and the physical, chemical and biological characteristics of their habitat were examined. Potential food sources of the juveniles were also investigated using elemental and stable isotope analysis. Results showed that juveniles are more abundant in seagrass areas and the transition zone between seagrass and the rubble-dominated reef flat. A non-metric multidimensional scaling (MDS) plot indicated that juvenile density was most positively associated with coarser sand and rubble (>0.5 mm) and seagrass (Thalassia hemprichii) abundance (2D stress = 0.11). Juvenile density was also positively associated with sediment organic matter from plant detritus to a lesser extent. Elemental and isotope analysis of one site indicated that epiphytes were the primary food source of juveniles, while sediment detritus from microalgae and seagrass was a secondary food source. This study corroborates anecdotal evidence regarding the importance of seagrass to S. cf. horrens as potential refugia and source of high-quality food for its juveniles. These findings underscore the need to protect the nursery habitats of wild juveniles and provide critical information for the selection of suitable natural habitats for releasing cultured juveniles of this important species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akamine J (2002) Trepang exploitation in the Philippines: updated information. SPC Bêche-de-mer Inf Bull 17:17–21. doi:10.3759/tropics.10.591

    Google Scholar 

  • Aminot A, Rey F (2000) Standard procedure for the determination of chlorophyll a by spectroscopic methods. ICES techniques in environmental sciences. International Council for the Exploration of the Sea (ICES), Denmark

  • Anderson SC, Flemming JM, Watson R, Lotze HK (2011) Serial exploitation of global sea cucumber fisheries. Fish Fish 12(3):317–339. doi:10.1111/j.1467-2979.2010.00397.x

    Article  Google Scholar 

  • Battaglene SC (1999) Culture of tropical sea cucumbers for stock restoration and enhancement, Naga. ICLARM Q 22(4):4–11

    Google Scholar 

  • Battaglene SC, Seymour JE, Ramofafia C (1999) Survival and growth of cultured juvenile sea cucumbers Holothuria scabra. Aquaculture 178(3):293–322. doi:10.1016/s0044-8486(99)00130-1

    Article  Google Scholar 

  • Bell JD, Nash WJ (2004) When should restocking and stock enhancement be used to manage sea cucumber fisheries? In: Lovatelli A, Conand C, Purcell S, Uthicke S, Hamel JF, Mercier A (eds) Advances in sea cucumber aquaculture and management. FAO fisheries technical paper no. 463. United Nations Food and Agriculture Organisation, Rome, pp 173–80

  • Bell JD, Purcell SW, Nash WJ (2008) Restoring small-scale fisheries for tropical sea cucumbers. Ocean Coast Manage 51(8):589–593. doi:10.1016/j.ocecoaman.2008.06.011

    Article  Google Scholar 

  • Bond AB (2007) The evolution of color polymorphism: crypticity, searching images, and apostatic selection. Annu Rev Ecol Evol Syst 38:489–514. doi:10.1146/annurev.ecolsys.38.091206.095728

    Article  Google Scholar 

  • Bordbar S, Anwar F, Saari N (2011) High-value components and bioactives from sea cucumbers for functional foods—a review. Mar Drugs 9(10):1761–1805. doi:10.3390/md9101761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan J (1984) Sediment analysis. In: Holme N, McIntyre A (eds) Methods for the study of marine benthos, 2nd edn. Blackwell Scientific Publications, Oxford, pp 41–65

    Google Scholar 

  • Bulteel P, Jangoux M, Coulon P (1992) Biometry, bathymetric distribution and reproductive cycle of the holothuroid Holothuria tubulosa (Echinodermata) from Mediterranean sea grass beds. PSZNI Mar Ecol 13(1):53–62. doi:10.1111/j.1439-0485.1992.tb00339.x

    Article  Google Scholar 

  • Byrne M, Rowe F, Uthicke S (2010) Molecular taxonomy, phylogeny and evolution in the family Stichopodidae (Aspidochirotida: Holothuroidea) based on COI and 16S mitochondrial DNA. Mol Phylogenet Evol 56(3):1068–1081. doi:10.1016/j.ympev.2010.04.013

    Article  CAS  PubMed  Google Scholar 

  • Cameron JL, Fankboner PV (1989) Reproductive biology of the commercial sea cucumber Parastichopus californicus (Stimpson)(Echinodermata: Holothuroidea). II. Observations on the ecology of development, recruitment and the juvenile life stage. J Exp Mar Biol Ecol 127(1):43–67. doi:10.1139/z86-027

    Article  Google Scholar 

  • Cebrián J, Duarte CM (1998) Patterns in leaf herbivory on seagrasses. Aquat Bot 60(1):67–82. doi:10.1016/s0304-3770(97)00070-3

    Article  Google Scholar 

  • Chiu SH, Huang YH, Lin HJ (2013) Carbon budget of leaves of the tropical intertidal seagrass Thalassia hemprichii. Estuar Coast Shelf Sci 125:27–35. doi:10.1016/j.ecss.2013.03.026

    Article  CAS  Google Scholar 

  • Choo PS (2008) The Philippines: a hotspot of sea cucumber fisheries in Asia. In: Toral-Granda V, Lovatelli A, Vasconcellos M (eds) Sea cucumbers: a global review of fisheries and trade. FAO fisheries and aquaculture technical paper, vol 516, pp 119–140

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth

    Google Scholar 

  • Conand C (1981) Sexual cycle of three commercially important holothurian species (Echinodermata) from the lagoon of New Caledonia. Bull Mar Sci 31(3):523–543

    Google Scholar 

  • Conand C (1993) Ecology and reproductive biology of Stichopus variegatus an Indo-Pacific coral reef sea cucumber (Echinodermata: Holothuroidea). Bull Mar Sci 52(3):970–981

    Google Scholar 

  • Cuthill IC, Stevens M, Sheppard J, Maddocks T, Párraga CA, Troscianko TS (2005) Disruptive coloration and background pattern matching. Nature 434:72–74. doi:10.1038/nature03312

    Article  CAS  PubMed  Google Scholar 

  • Daehnick AE, Sullivan MJ, Moncreiff CA (1992) Primary production of the sand microflora in seagrass beds of Mississippi sound. Bot Mar 35(2):131–140. doi:10.1515/botm.1992.35.2.131

    Article  Google Scholar 

  • Dawes CJ, Lawrence JM (1980) Seasonal changes in the proximate constituents of the seagrasses Thalassia testudinum, Halodule wrightii and Syringodium filiforme. Aquat Bot 8:371–380. doi:10.1016/0304-3770(80)90066-2

    Article  CAS  Google Scholar 

  • Edullantes C (2015) Reproductive ecology and larval development of the sea cucumber Stichopus cf. horrens. Master thesis, University of the Philippines, Diliman

  • Endler JA (1978) A predator’s view of animal color patterns. In: Hecht MK, Steere WC, Wallace B (eds) Evolutionary biology, vol 11. Plenum Press, New York, pp 319–364. doi:10.1007/978-1-4615-6956-5_5

    Chapter  Google Scholar 

  • Endler JA, Greenwood JD (1988) Frequency-dependent predation, crypsis and aposematic coloration [and discussion]. Philos Trans R Soc Biol Sci 319:505–523. doi:10.1098/rstb.1988.0062

    Article  CAS  Google Scholar 

  • Eriksson H, Friedman K, Solofa A, Mulipola AT (2007) A pilot study to investigate the survival of stichopus horrens after viscera harvest in Samoa. SPC Bêche-de-mer Information Bulletin 26:2–4

    Google Scholar 

  • Eriksson H, Jamon A, Wickel J (2012) Observations on habitat utilization by the sea cucumber Stichopus chloronotus. SPC Bêche-de-mer Inf Bull 32:39–42

    Google Scholar 

  • Eriksson H, Thorne BV, Byrne M (2013) Population metrics in protected commercial sea cucumber populations (curryfish: Stichopus herrmanni) on one tree reef, Great Barrier Reef. Mar Ecol Prog Ser 473:225–234. doi:10.3354/meps10054

    Article  Google Scholar 

  • Fourqurean JW, Willsie A, Rose CD, Rutten LM (2001) Spatial and temporal pattern in seagrass community composition and productivity in south Florida. Mar Biol 138(2):341–354. doi:10.1007/s002270000448

    Article  Google Scholar 

  • Friedman K, Eriksson H, Tardy E, Pakoa K (2010) Management of sea cucumber stocks: patterns of vulnerability and recovery of sea cucumber stocks impacted by fishing. Fish Fish 12(1):75–93. doi:10.1111/j.1467-2979.2010.00384.x

    Article  Google Scholar 

  • Fry B (1984) 13C/12C ratios and the trophic importance of algae in florida Syringodium filiforme seagrass meadows. Mar Biol 79(1):11–19. doi:10.1007/bf00404980

    Article  CAS  Google Scholar 

  • Hamel JF, Mercier A (1996) Early development, settlement, growth, and spatial distribution of the sea cucumber Cucumaria frondosa (Echinodermata: Holothuroidea). Can J Fish Aquat Sci 53(2):253–271. doi:10.1139/f95-186

    Article  Google Scholar 

  • Hamel JF, Conand C, Pawson DL, Mercier A (2001) The sea cucumber Holothuria scabra (Holothuroidea: Echinodermata): its biology and exploitation as beche-de-mer. Adv Mar Biol 41:129–223. doi:10.1016/s0065-2881(01)41003-0

    Article  Google Scholar 

  • Hearn A, Pinillos F (2006) Baseline information on the warty sea cucumber Stichopus horrens in Santa Cruz, Galápagos, prior to the commencement of an illegal fishery. SPC Bêche-de-mer Inf Bull 24:3–10

    Google Scholar 

  • Heijs FM (1984) Annual biomass and production of epiphytes in three monospecific seagrass communities of Thalassia hemprichii (Ehrenb.) Aschers. Aquat Bot 20:195–218. doi:10.1016/0304-3770(84)90087-1

    Article  Google Scholar 

  • James DB (2005) Information on juvenile holothurians. SPC Bêche-de-mer Inf Bull 21:26–27

    Google Scholar 

  • Jaschinski S, Aberle N, Gohse-Reimann S, Brendelberger H, Wiltshire KH, Sommer U (2009) Grazer diversity effects in an eelgrass–epiphyte–microphytobenthos system. Oecologia 159(3):607–615. doi:10.1007/s00442-008-1236-2

    Article  PubMed  Google Scholar 

  • Kennedy H, Beggins J, Duarte CM, Fourqurean JW, Holmer M, Marbà N, Middelburg JJ (2010) Seagrass sediments as a global carbon sink: isotopic constraints. Glob Biogeochem Cycles 24(4):1–8. doi:10.1029/2010gb003848

    Article  Google Scholar 

  • Kinch J (2012) Observation of juvenile Stichopus vastus in Pohnpei Lagoon, Federated States of Micronesia. SPC Bêche-de-mer Inf Bull 32:62

    Google Scholar 

  • Klumpp DW, Howard RK, Pollard DA (1989) Trophodynamics and nutritional ecology of seagrass communities. In: Larkum AWD, McComb AJ, Shepaherd SA (eds) Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier, Amsterdam, pp 394–457

    Google Scholar 

  • Klumpp DW, Salita-Espinosa JS, Fortes MD (1992) The role of epiphytic periphyton and macroinvertebrate grazers in the trophic flux of a tropical seagrass community. Aquat Bot 43(4):327–349. doi:10.1016/0304-3770(92)90046-l

    Article  Google Scholar 

  • Lepoint G, Nyssen F, Gobert S, Dauby P, Bouquegneau JM (2000) Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets. Mar Biol 136(3):513–518. doi:10.1007/s002270050711

    Article  CAS  Google Scholar 

  • Lindeboom HJ, Sandee AJJ (1989) Production and consumption of tropical seagrass fields in eastern Indonesia measured with bell jars and microelectrodes. Neth J Sea Res 23(2):181–190. doi:10.1016/0077-7579(89)90012-4

    Article  Google Scholar 

  • Liu X, Zhou Y, Yang H, Ru S (2013) Eelgrass detritus as a food source for the sea cucumber Apostichopus japonicus Selenka (Echinidermata: Holothuroidea) in coastal waters of north China: an experimental study in flow-through systems. PLoS One 8(3):e58293. doi:10.1371/journal.pone.0058293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzen K, Leber KM, Blankenship HL (2010) Responsible approach to marine stock enhancement: an update. Rev Fish Sci 18(2): 189–210. doi:10.1080/10641262.2010.491564

    Article  Google Scholar 

  • Lovatelli A, Conand C (eds) (2004) Advances in sea cucumber aquaculture and management no. 463. FAO, Rome

    Google Scholar 

  • Mann KH (1988) Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol Oceanogr 33:910–930. doi:10.4319/lo.1988.33.4_part_2.0910

    CAS  Google Scholar 

  • Mercier A, Battaglene SC, Hamel JF (1999) Daily burrowing cycle and feeding activity of juvenile sea cucumbers Holothuria scabra in response to environmental factors. J Exp Mar Biol Ecol 239(1):125–156. doi:10.1016/s0022-0981(99)00034-9

    Article  Google Scholar 

  • Mercier A, Battaglene SC, Hamel JF (2000a) Periodic movement, recruitment and size-related distribution of the sea cucumber Holothuria scabra in Solomon Islands. Hydrobiologia 440:81–100. doi:10.1007/978-94-017-1982-7_8

    Article  Google Scholar 

  • Mercier A, Battaglene SC, Hamel JF (2000b) Settlement preferences and early migration of the tropical sea cucumber Holothuria scabra. J Exp Mar Biol Ecol 249(1):89–110. doi:10.1016/s0022-0981(00)00187-8

    Article  CAS  PubMed  Google Scholar 

  • Merilaita S (2003) Visual background complexity facilitates the evolution of camouflage. Evolution 57(6):1248–1254. doi:10.1554/03-011

    Article  PubMed  Google Scholar 

  • Merilaita S, Tuomi J, Jormalainen V (1999) Optimization of cryptic coloration in heterogeneous habitats. Biol J Linn Soc 67(2):151–161. doi:10.1111/j.1095-8312.1999.tb01858.x

    Article  Google Scholar 

  • Merilaita S, Lyytinen A, Mappes J (2001) Selection for cryptic coloration in a visually heterogeneous habitat. Proc R Soc Lond B Biol 268:1925–1929. doi:10.1098/rspb.2001.1747

    Article  CAS  Google Scholar 

  • Michio K, Kengo K, Yasunori K, Hitoshi M, Takayuki Y, Hideaki Y, Hiroshi S (2003) Effects of deposit feeder Stichopus japonicus on algal bloom and organic matter contents of bottom sediments of the enclosed sea. Mar Poll Bull 47(1):118–125. doi:10.1016/s0025-326x(02)00411-3

    Article  CAS  Google Scholar 

  • Miyajima T, Suzumura M, Umezawa Y, Koike I (2001) Microbiological nitrogen transformation in carbonate sediments of a coral-reef lagoon and associated seagrass beds. Mar Ecol Prog Ser 217:273–286. doi:10.3354/meps217273

    Article  Google Scholar 

  • Moncreiff CA, Sullivan MJ, Daehnick AE (1992) Primary production dynamics in seagrass beds of Mississippi Sound: the contributions of seagrass epiphytic algae, sand microflora, and phytoplankton. Mar Ecol Prog Ser 87(1):161–171. doi:10.3354/meps087161

    Article  Google Scholar 

  • Moriarty DJW (1982) Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organic carbon and organic nitrogen in sediments of the Great Barrier Reef. Mar Freshw Res 33(2):255–263. doi:10.1071/mf9820255

    Article  Google Scholar 

  • Purcell SW (2012) Principles and science of stocking marine areas with sea cucumbers. In: Hair CA, Pickering TD, Mills DJ (eds) Asia–Pacific tropical sea cucumber aquaculture, ACIAR proceedings no. 136. Australian Centre for International Agricultural Research, Canberra, pp 92–103

  • Purcell SW (2014) Value, market preferences and trade of beche-de-mer from Pacific Island sea cucumbers. PLoS One. doi:10.1371/journal.pone.0095075

    Google Scholar 

  • Purcell SW, Samyn Y, Conand C (2012a) Commercially important sea cucumbers of the world. FAO, Rome

    Google Scholar 

  • Purcell SW, Hair CA, Mills DJ (2012b) Sea cucumber culture, farming and sea ranching in the tropics: progress, problems and opportunities. Aquaculture 368:68–81. doi:10.1016/j.aquaculture.2012.08.053

    Article  Google Scholar 

  • Purcell SW, Mercier A, Conand C, Hamel JF, Toral-Granda MV, Lovatelli A, Uthicke S (2013) Sea cucumber fisheries: global analysis of stocks, management measures and drivers of overfishing. Fish Fish 14(1):34–59. doi:10.1111/j.1467-2979.2011.00443.x

    Article  Google Scholar 

  • Purcell SW, Choo PS, Akamine J, Fabinyi M (2014) Alternative product forms, consumer packaging and extracted derivatives of tropical sea cucumbers. SPC Bêche-de-mer Inf Bull 34:47–52

    Google Scholar 

  • Ramofafia C, Foyle TP, Bell JD (1997) Growth of juvenile Actinopyga mauritiana (Holothuroidea) in captivity. Aquaculture 152(1):119–128. doi:10.1016/s0044-8486(96)01525-6

    Article  Google Scholar 

  • Reichenbach N (1999) Ecology and fishery biology of Holothuria fuscogilva (Echinodermata: Holothuroidea) in the Maldives, Indian Ocean. Bull Mar Sci 64(1):103–114

    Google Scholar 

  • Roberts D, Gebruk A, Levin V, Manship BAD (2000) Feeding and digestive strategies in deposit-feeding holothurians: Oceanogr Mar Biol Annu Rev 38:257–310

    Google Scholar 

  • Segal B, Castro CB (2001) A proposed method for coral cover assessment: a case study in Abrolhos, Brazil. Bull Mar Sci 69(2):487–496

    Google Scholar 

  • Shiell G (2004) Field observations of juvenile sea cucumbers. SPC Bêche-de-mer Inf Bull 20:6–11

    Google Scholar 

  • Slater MJ, Jeffs AG (2010) Do benthic sediment characteristics explain the distribution of juveniles of the deposit-feeding sea cucumber Australostichopus mollis? J Sea Res 64(3):241–249. doi:10.1016/j.seares.2010.03.005

    Article  Google Scholar 

  • Slater MJ, Carton AG, Jeffs AG (2010) Highly localised distribution patterns of juvenile sea cucumber Australostichopus mollis. N Z J Mar Freshw 44(4):201–216. doi:10.1080/00288330.2010.504526

    Article  CAS  Google Scholar 

  • Slater MJ, Jeffs AG, Sewell MA (2011) Organically selective movement and deposit-feeding in juvenile sea cucumber Australostichopus mollis determined in situ and in the laboratory. J Exp Mar Biol Ecol 409(1):315–323. doi:10.1016/j.jembe.2011.09.010

    Article  Google Scholar 

  • Sloan NA, Von Bodungen B (1980) Distribution and feeding of the sea cucumber Isostichopus badionotus in relation to shelter and sediment criteria of the Bermuda platform. Mar Ecol Prog Ser 2:257–264. doi:10.3354/meps002257

    Article  Google Scholar 

  • Southward AJ, Young CM, Fuiman LA (2005) Restocking initiatives. Adv Mar Biol 49:9–41. doi:10.1016/s0065-2881(05)49002-1

    Article  Google Scholar 

  • Todd PA, Briers RA, Ladle RJ, Middleton F (2006) Phenotype-environment matching in the shore crab (Carcinus maenas). Mar Biol 148(6):1357–1367. doi:10.1007/s00227-005-0159-2

    Article  Google Scholar 

  • Toral-Granda MV, Martínez PC (2007) Reproductive biology and population structure of the sea cucumber Isostichopus fuscus (Ludwig, 1875) (Holothuroidea) in Caamaño, Galápagos Islands, Ecuador. Mar Biol 151(6):2091–2098. doi:10.1007/s00227-007-0640-1

    Article  Google Scholar 

  • Toral-Granda V, Lovatelli A, Vasconcellos M (eds) (2008) Sea cucumbers: a global review of fisheries and trade. FAO, Rome

    Google Scholar 

  • Uthicke S (1999) Sediment bioturbation and impact of feeding activity of Holothuria (Halodeima) atra and Stichopus chloronotus, two sediment feeding holothurians, at Lizard Island, Great Barrier Reef. Bull Mar Sci 64(1):129–141

    Google Scholar 

  • Uthicke S, Karez R (1999) Sediment patch selectivity in tropical sea cucumbers (Holothurioidea: Aspidochirotida) analysed with multiple choice experiments. J Exp Mar Biol Ecol 236(1):69–87. doi:10.1016/s0022-0981(98)00190-7

    Article  Google Scholar 

  • Van Tussenbroek BI, Vonk JA, Stapel J, Erftemeijer PL, Middelburg JJ, Zieman JC (2007) The biology of Thalassia: paradigms and recent advances in research. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin, pp 409–439. doi:10.1007/978-1-4020-2983-7_18

    Google Scholar 

  • Vonk JA, Christianen MJ, Stapel J (2008) Redefining the trophic importance of seagrasses for fauna in tropical Indo-Pacific meadows. Estuar Coast Shelf Sci 79(4):653–660. doi:10.1016/j.ecss.2008.06.002

    Article  Google Scholar 

  • Wiedemeyer WL (1994) Biology of small juveniles of the tropical holothurian Actinopyga echinites: growth, mortality, and habitat preferences. Mar Biol 120(1):81–93

    Google Scholar 

  • Yamana Y, Hamano T, Miki K (2006) Distribution of the Japanese sea cucumber Apostichopus japonicus in the intertidal zone of Hirao Bay, Eastern Yamaguchi Pref., Japan: suitable environmental factors for juvenile habitats. J Natl Fish Univ (Japan) 54(3):111–120

    Google Scholar 

  • Yamana Y, Hamano T, Goshima S (2010) Natural growth of juveniles of the sea cucumber Apostichopus japonicus: studying juveniles in the intertidal habitat in Hirao Bay, eastern Yamaguchi Prefecture, Japan. Fish Sci 76(4):585–593. doi:10.1007/s12562-010-0245-3

    Article  CAS  Google Scholar 

  • Yingst JY (1976) The utilization of organic matter in shallow marine sediments by an epibenthic deposit-feeding holothurian. J Exp Mar Biol Ecol 23(1):55–69. doi:10.1016/0022-0981(76)90085-x

    Article  CAS  Google Scholar 

  • Zaidnuddin I (2009) Observation of the first grow out activities with Stichopus horrens juveniles in Malaysia. SPC Bêche-de-mer Inf Bull 29:48

    Google Scholar 

  • Zamora LN, Jeffs AG (2011) Feeding, selection, digestion and absorption of the organic matter from mussel waste by juveniles of the deposit-feeding sea cucumber, Australostichopus mollis. Aquaculture 317(1):223–228. doi:10.1016/j.aquaculture.2011.04.011

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grants to NPA from the Philippine Department of Science and Technology Accelerated Science and Technology Human Resource Development Program and the University of the Philippines Bolinao Marine Laboratory. We are grateful to the Silliman University Biology Department, Angelo King Center for Research and Environmental Management and the Institute of Environmental and Marine Sciences for the use of facilities, Allan Abuan, Renato Adolfo, Ronald de Guzman, Christine Edullantes and Minin Sinsona for assistance in the field and laboratory, Jasper Maypa for the map and Dr. Matthew J. Slater for scientific advice. We also thank the local government officials of Anda, Pangasinan for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Palomar-Abesamis.

Ethics declarations

All procedures performed on animals were in accordance with Philippine laws (Republic Act 9147, Wildlife Act).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Michael T. Monaghan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palomar-Abesamis, N., Abesamis, R.A. & Juinio-Meñez, M.A. Distribution and microhabitat associations of the juveniles of a high-value sea cucumber, Stichopus cf. horrens, in northern Philippines. Aquat Ecol 51, 17–31 (2017). https://doi.org/10.1007/s10452-016-9591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-016-9591-2

Keywords

Navigation