Skip to main content

Advertisement

Log in

Patterns of distribution and composition of sea urchin assemblages on Brazilian subtropical rocky reefs

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Sea urchins are a key group of herbivores in both temperate and tropical food webs because they control macroalgal cover, and consequently influence primary productivity and phase shifts on reefs. Despite being abundant on southwestern Atlantic reefs, sea urchin distributions, and their association with abiotic and biotic variables, are poorly known. In this study, sea urchin assemblages were surveyed in 2011 at multiple depths at eight sites in Arraial do Cabo (Brazil, 22°57′S/41°01′W), with sites split between a colder, more wave-exposed location, and a warmer, more sheltered location. The influence of this large-scale physical gradient, along with changes in depth and substrate complexity, on sea urchin densities was then investigated. Predator biomass was low and did not vary significantly among sites. Among the seven species recorded, Paracentrotus gaimardi, Echinometra lucunter and Arbacia lixula were dominant. Linear mixed-effects models indicated that location was important, with mid-sized P. gaimardi individuals and A. lixula more common at cooler, exposed sites and E. lucunter more abundant at warmer, sheltered sites. Sea urchin densities typically decreased with increasing depth, probably caused by changes in factors such as light, wave exposure, and sedimentation. Substrate complexity had a positive effect on the abundance of all species, presumably because of the increased availability of refuges. Physical gradients have important consequences for urchin distributions and their ecological functions at relatively small spatial scales on these reefs, and should be incorporated into herbivore monitoring programmes. Research is also required to examine how differential sea urchin distributions affect benthic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agatsuma Y, Yamada H, Taniguchi K (2006) Distribution of the sea urchin Hemicentrotus pulcherrimus along a shallow bathymetric gradient in Onagawa Bay in northern Honshu, Japan. J Shellfish Res 25:1027–1036

    Google Scholar 

  • Agnetta D, Bonaviri C, Badalamenti F, Scianna C, Vizzini S, Gianguzza P (2013) Functional traits of two co-occurring sea urchins across a barren/forest patch system. J Sea Res 76:170–177. doi:10.1016/j.seares.2012.08.009

    Article  Google Scholar 

  • Alves FMA, Chícharo LM, Serrão E (2001) Algal cover and sea urchin spatial distribution at Madeira Island (NE Atlantic). Sci Mar 65:383–392

    Article  Google Scholar 

  • Amaral ACZ, Jablonski S (2005) Conservation of marine and coastal biodiversity in Brazil. Conserv Biol 19(3):625–631

    Article  Google Scholar 

  • Andrew NL (1993) Spatial heterogeneity, sea urchin grazing, and habitat structure on reefs in temperate Australia. Ecology 74:292–302

    Article  Google Scholar 

  • Asner GP, Levick SR (2012) Landscape-scale effects of herbivores on treefall in African savannas. Ecol Lett 15:2008–2011. doi:10.1111/j.1461-0248.2012.01842.x

    Google Scholar 

  • Barnes D, Crook A (2001) Quantifying behavioural determinants of the coastal European sea-urchin Paracentrotus lividus. Mar Biol 138:1205–1212. doi:10.1007/s002270100543

    Article  Google Scholar 

  • BDMEP (2013) Meteorological database for research and teaching purposes. Instituto Nacional de Meteorologia, Brazil. http://www.inmet.gov.br/. Accessed: 27 Dec 2013

  • Beddingfield SD, McClintock JB (2000) Demographic characteristics of Lytechinus variegatus (Echinoidea: Echinodermata) from three habitats in a North Florida Bay, Gulf of Mexico. Mar Ecol 21:17–40. doi:10.1046/j.1439-0485.2000.00688.x

    Article  Google Scholar 

  • Bender MG, Floeter SR, Hanazaki N (2012) Do traditional fishers recognise reef fish species declines? Shifting environmental baselines in Eastern Brazil. Fish Manag Ecol 20(1):58–67. doi:10.1111/fme.12006

    Article  Google Scholar 

  • Benedetti-Cecchi L, Cinelli F (1995) Habitat heterogeneity, sea urchin grazing and the distribution of algae in littoral rock pools on the west coast of Italy (western Mediterranean). Mar Ecol Prog Ser 126:203–212

    Article  Google Scholar 

  • Bonaviri C, Vega Fernández T, Fanelli G, Badalamenti F, Gianguzza P (2011) Leading role of the sea urchin Arbacia lixula in maintaining the barren state in southwestern Mediterranean. Mar Biol 158:2505–2513. doi:10.1007/s00227-011-1751-2

    Article  Google Scholar 

  • Boudouresque CF, Yoneshigue Y (1983) Données préliminaires sur le régime alimentaire de quelques Échinoides réguliers de la région de Cabo Frio (RJ, Brésil). Symbiosis 15(4):224–226

    Google Scholar 

  • Bulleri F, Benedetti-Cecchi L, Cinelli F (1999) Grazing by the sea urchins Arbacia lixula L. and Paracentrotus lividus Lam. in the Northwest Mediterranean. J Exp Mar Biol Ecol 241:81–95. doi:10.1016/S0022-0981(99)00073-8

    Article  Google Scholar 

  • Burkepile DE (2013) Comparing aquatic and terrestrial grazing ecosystems: is the grass really greener? Oikos 122:306–312. doi:10.1111/j.1600-0706.2012.20716.x

    Article  Google Scholar 

  • Calderón EN, Zilberberg C, Paiva PC De (2007) The possible role of Echinometra lucunter (Echinodermata: Echinoidea) in the local distribution of Darwinella sp. (Porifera : Dendroceratida) in Arraial do Cabo, Rio de Janeiro State, Brazil. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds). Porifera research: biodiversity, innovation and sustainability. Série Livros 28, Museu Nacional, Rio de Janeiro, pp 211–217

  • Calderón I, Turon X, Lessios H (2009) Characterization of the sperm molecule bindin in the sea urchin genus Paracentrotus. J Mol Evol 68:366–376. doi:10.1007/s00239-009-9219-4

    Article  Google Scholar 

  • Cameron R, Schroeter S (1980) Sea urchin recruitment: effect of substrate selection on juvenile distribution. Mar Ecol Prog Ser 2:243–247

    Article  Google Scholar 

  • Choat J, Clements K (1998) Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu Rev Ecol Syst 29:375–403

    Article  Google Scholar 

  • Clemente S, Hernández JC (2008) Influence of wave exposure and habitat complexity in determining spatial variation of the sea urchin Diadema aff. antillarum (Echinoidea: Diadematidae) populations and macroalgal cover (Canary Islands–Eastern Atlantic Ocean). Rev Biol Trop 56:229–254

    Google Scholar 

  • Clemente S, Hernández JC, Brito A (2009) Evidence of the top–down role of predators in structuring sublittoral rocky-reef communities in a Marine Protected Area and nearby areas of the Canary Islands. ICES J Mar Sci 66:64–71

    Article  Google Scholar 

  • Coelho-Souza SA, López MS, Guimarães JRD, Coutinho R, Candella RN (2012) Biophysical interactions in the Cabo Frio upwelling system Southeastern Brazil. Braz J Oceanogr 60(3):353–365

    Article  Google Scholar 

  • Comeros-Raynal M, Choat J, Polidoro B et al (2012) The likelihood of extinction of iconic and dominant herbivores and detritivores of coral reefs: the parrotfishes and surgeonfishes. PLoS One 7:e39825. doi:10.1371/journal.pone.0039825

    Article  CAS  Google Scholar 

  • Contins M, Ventura CRR (2011) Embryonic, larval, and post-metamorphic development of the sea urchin Cassidulus mitis (Echinoidea; Cassiduloida): an endemic brooding species from Rio de Janeiro, Brazil. Mar Biol 158:2279–2288. doi:10.1007/s00227-011-1732-5

    Article  Google Scholar 

  • Entrambasaguas L, Pérez-Ruzafa A, Gárcia-Charton J, Stobart B, Bacallado JJ (2008) Abundance, spatial distribution and habitat relationships of echinoderms in the Cabo Verde Archipelago (eastern Atlantic). Mar Freshw Res 59:477–488

    Article  Google Scholar 

  • Floeter SR, Halpern BS, Ferreira CEL (2006) Effects of fishing and protection on Brazilian reef fishes. Biol Conserv 128:391–402

    Article  Google Scholar 

  • Francini-Filho R, Ferreira C, Coni E, Moura RL, Kaufman L (2010) Foraging activity of roving herbivorous reef fish (Acanthuridae and Scaridae) in eastern Brazil: influence of resource availability and interference competition. J Mar Biol Ass UK 90:481–492. doi:10.1017/S0025315409991147

    Article  Google Scholar 

  • Froese R, Pauly D (eds) (2013) FishBase. World Wide Web electronic publication. http://www.fishbase.org, version (12/2013)

  • Gaines S, Lubchenco J (1982) A unified approach to marine plant-herbivore interactions II. Biogeography. Annu Rev Ecol Syst 13:111–138

    Article  Google Scholar 

  • Garrabou J, Ballesteros E, Zabala M (2002) Structure and dynamics of north-western Mediterranean rocky benthic communities along a depth gradient. Estuar Coast Shelf S 55:493–508. doi:10.1006/ecss.2001.0920

    Article  Google Scholar 

  • Gianguzza P, Agnetta D, Bonaviri C, Di Trapani F, Visconti G, Gianguzza F, Riggio S (2011) The rise of thermophilic sea urchins and the expansion of barren grounds in the Mediterranean Sea. Chem Ecol 27:129–134

    Article  Google Scholar 

  • Guidetti P, Dulcic J (2007) Relationships among predatory fish, sea urchins and barrens in Mediterranean rocky reefs across a latitudinal gradient. Mar Environ Res 63:168–184

    Article  CAS  Google Scholar 

  • Harborne AR, Mumby PJ, Zychaluk K, Hedley JD, Blackwell PG (2006) Modeling the beta diversity of coral reefs. Ecology 87(11):2871–2881

    Article  Google Scholar 

  • Hereu B, Zabala M, Linares C, Sala E (2004) Temporal and spatial variability in settlement of the sea urchin Paracentrotus lividus in the NW Mediterranean. Mar Biol 144:1011–1018. doi:10.1007/s00227-003-1266-6

    Article  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551. doi:10.1126/science.265.5178.1547

    Article  CAS  Google Scholar 

  • Hughes TP, Bellwood DR, Folke CS, McCook LJ, Pandolfi JM (2007a) No-take areas, herbivory and coral reef resilience. Trends Ecol Evol 22:1–3. doi:10.1016/j.tree.2006.10.009

    Article  Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR et al (2007b) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365. doi:10.1016/j.cub.2006.12.049

    Article  CAS  Google Scholar 

  • Jablonski S, Filet M (2008) Coastal management in Brazil—a political riddle. Ocean Coast Manag 51:536–543

    Article  Google Scholar 

  • Jackson J (1997) Reefs since Columbus. Coral Reefs 16:23–32

    Article  Google Scholar 

  • Kohler KE, Gill SM (2006) Coral point count with excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32(9):1259–1269. doi:10.1016/j.cageo.2005.11.009

    Article  Google Scholar 

  • Lawrence JM (2013) Sea urchins: biology and ecology, 3rd edn. Elsevier Science, Amsterdam, p 380

    Google Scholar 

  • Lessios HA (2010) Speciation in sea urchins. In: Harris LG, Bottger SA, Walker CW and Lesser MP (eds) Echinoderms: Durham. Proceedings of the 12th echinoderm conference, Durham, New Hampshire. CRC Press, London, pp 91–101

  • Lessios H, Lockhart S, Collin R et al (2012) Phylogeography and bindin evolution in Arbacia, a sea urchin genus with an unusual distribution. Mol Ecol 21:130–144. doi:10.1111/j.1365-294X.2011.05303.x

    Article  CAS  Google Scholar 

  • Lima EJB, Gomes PB, Souza JRB (2009) Reproductive biology of Echinometra lucunter (Echinodermata: Echinoidea) in a northeast Brazilian sandstone reef. An Acad Bras Cienc 81(1):51–59

    Article  Google Scholar 

  • Mcclanahan TR (1988) Coexistence in a sea urchin guild and its implications to coral reef diversity and degradation. Oecologia 77:210–218

    Article  Google Scholar 

  • McClanahan TR (1995) Fish predators and scavengers of the sea urchin Echinometra mathaei in Kenyan coral-reef marine parks. Environ Biol Fish 43:187–193

    Article  Google Scholar 

  • McClanahan TR (1998) Predation and the distribution and abundance of tropical sea urchin populations. J Exp Mar Biol Ecol 221:231–255

    Article  Google Scholar 

  • McClanahan TR, Muthiga NA (2007) Ecology of Echinometra. In: Lawrence JM (ed) Edible sea urchins: biology and ecology. pp 297–317

  • Miller B, Emlet R (1999) Development of newly metamorphosed juvenile sea urchins (Strongylocentrotus franciscanus and S. purpuratus): morphology, the effects of temperature and larval food ration, and a method for determining age. J Exp Mar Biol Ecol 235(1):67–90

    Article  Google Scholar 

  • Mourão PAS (2007) A carbohydrate-based mechanism of species recognition in sea urchin fertilization. Braz J Med Biol Res 40(1):5–17

    Article  Google Scholar 

  • Oliveira M (1991) Survival of seaweeds ingested by three species of tropical sea urchins from Brazil. Hydrobiologia 222:13–17. doi:10.1007/BF00017495

    Article  Google Scholar 

  • Ortega-Borges L, Tuya F, Haroun JR (2009) Does depth and sedimentation interact with sea urchins to affect algal assemblage patterns on eastern Atlantic reefs? J Shellfish Res 28(4):947–955

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1-113

  • Privitera D, Noli M, Falugi C, Chiantore M (2008) Inter- and intra-specific competition between Paracentrotus lividus and Arbacia lixula in resource-limited barren areas. J Sea Res 60:184–192

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.r-project.org

  • Sanchez-Jerez P, Cesar A, Cortez FS et al (2001) Spatial distribution of the most abundant sea urchin populations on the southeast coast of Sao Paulo (Brazil). Cienc Mar 27:139–153

    Google Scholar 

  • Shulman MJ (1990) Aggression among sea urchins on Caribbean coral reefs. J Exp Mar Biol Ecol 140:197–207. doi:10.1016/0022-0981(90)90127-X

    Article  Google Scholar 

  • Spirlet C, Grosjean P, Jangoux M (1998) Reproductive cycle of the echinoid Paracentrotus lividus: analysis by means of the maturity index. Invertebr Reprod Dev 34(1):69–81. doi:10.1080/07924259.1998.9652355

    Article  Google Scholar 

  • Tuya F, Boyra A, Sanchez-Jerez P, Barbera C, Haroun RJ (2004) Relationships between rocky-reef fish assemblages, the sea urchin Diadema antillarum and macroalgae throughout the Canarian Archipelago. Mar Ecol Prog Ser 278:157–169. doi:10.3354/meps278157

    Article  Google Scholar 

  • Tuya F, Cisneros-Aguirre J, Ortega-Borges L, Haroun RJ (2007) Bathymetric segregation of sea urchins on reefs of the Canarian Archipelago: role of flow-induced forces. Estuar Coast Shelf S 73:481–488. doi:10.1016/j.ecss.2007.02.007

    Article  Google Scholar 

  • Uthicke S, Schaffelke B, Byrne M (2009) A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol Monogr 79:3–24

    Article  Google Scholar 

  • Valentin JL (1984) Analyse des parametres hydrobiologiques dans la remotee de Cabo Frio (Bresil). Mar Biol 82:259–276

    Article  Google Scholar 

  • Valentin JL, André DL, Jacob SA (1987) Hydrobiology in the Cabo Frio (Brazil) upwelling: two-dimensional structure and variability during a wind cycle. Cont Shelf Res 7(1):77–88

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Ventura CRR, Borges M, Campos LS et al (2013) Echinoderm research and diversity in Latin America. In: Alvarado JJ, Solis-Marin FA (eds) Echinoderm research and diversity. Springer, Berlin, pp 301–344

    Chapter  Google Scholar 

  • Wangensteen OS, Turon X, Casso M, Palacín C (2013) The reproductive cycle of the sea urchin Arbacia lixula in northwest Mediterranean: potential influence of temperature and photoperiod. Mar Biol 160:3157–3168

    Article  Google Scholar 

  • Witman JD, Dayton P (2001) Rocky subtidal communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, New York, pp 339–366

    Google Scholar 

  • Wright JT, Dworjanyn SA, Rogers CN, Steinberg PD, Williamson JE, Poore AGB (2005) Density-dependent sea urchin grazing: differential removal of species, changes in community composition and alternative community states. Mar Ecol Prog Ser 298:143–156

    Article  Google Scholar 

  • Xavier LAR (2010) Checklist of Echinodermata in Santa Catarina State, Brazil. Braz J Aquat Sci Technol 14:73–78

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank T.C. Mendes, R. Mazzei, G.O. Correal, M.B. Cavichiolli, J.P. Quimbayo, and R. M. Araújo who provided assistance in the field, and G.E. Cassola who helped in manuscript revision. We are grateful to C.J. Brown for help with statistical analyses. We thank FAPERJ – Fundação de Amparo à Pesquisa do Rio de Janeiro (grant #111.711/2012) and Fundação O Boticário de Proteção à Natureza (grant #0898/20111) for the financial support and to CAPES – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for a scholarship grant (CAMMC). ARH was funded by Australian Research Council DECRA fellowship DE120102459. ICMBio provided research permits (#27475-1), and ECOHUB provides ongoing financial support to LECAR lab activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. M. M. Cordeiro.

Additional information

Communicated by F. Bulleri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordeiro, C.A.M.M., Harborne, A.R. & Ferreira, C.E.L. Patterns of distribution and composition of sea urchin assemblages on Brazilian subtropical rocky reefs. Mar Biol 161, 2221–2232 (2014). https://doi.org/10.1007/s00227-014-2500-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2500-0

Keywords

Navigation