Skip to main content
Log in

Continuous-flow separation of cesium ion by ammonium molybdophosphate immobilized in a silica microhoneycomb (AMP-SMH)

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Monolithic cesium ion (Cs+) adsorbents were synthesized via the directional freezing of a silica hydrogel containing ammonium molybdophosphate (AMP) particles, followed by freeze-drying. The adsorbents have a honeycomb-like structure with nearly straight microchannels (approximately 21 µm in diameter) running through them and with AMP particles partially embedded intact within the channel walls. Because of its honeycomb-like structure, the adsorbent, denoted as AMP silica microhoneycomb (AMP-SMH), achieves a significantly lower pressure drop than a typical column packed with spherical particles with similar diffusion path lengths for Cs+ when water was passed through it (about 35-times lower). Comparison of breakthrough curves between the AMP-SMH and columns packed with particles by numerical simulation also indicates that AMP-SMH shows shorter length of unused bed values. These results demonstrate that the AMP-SMH shows a high performance in the continuous separation of Cs+ due to their unique microhoneycomb structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abusafa, A., Yücel, H.: Removal of 137Cs from aqueous solutions using different cationic forms of a natural zeolite clinoptilolite. Sep. Purif. Technol. 28(2), 103–116 (2002)

    Article  CAS  Google Scholar 

  • Anthony, R.G., Dosch, R.G., Gu, D., Philip, C.V.: Use of silicotitanates for removing cesium and strontium from defense waste. Ind. Eng. Chem. Res. 33(11), 2702–2705 (1994)

    Article  CAS  Google Scholar 

  • Audi, G., Bersillon, O., Blachot, J., Wapstra, A.H.: The NUBASE evaluation of nuclear and decay properties. Nucl. Phys. A 729(1), 3–128 (2003)

    Article  Google Scholar 

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  • Bridgeman, A.J.: Density functional study of the vibrational frequencies of α-Keggin heteropolyanions. Chem. Phys. 287(1–2), 55–69 (2003)

    Article  CAS  Google Scholar 

  • Doležal, J., Stejskal, J., Tympl, M., Kouřím, V.: Improved inorganic ion-exchangers. J. Radioanal. Nucl. Chem. 21(2), 381–387 (1974)

    Article  Google Scholar 

  • Dozol, J.F., Dozol, M., Macias, R.M.: Extraction of strontium and cesium by dicarbollides, crown ethers and functionalized calixarenes. J. Incl. Phenom. Macrocycl. Chem. 38(1–4), 1–22 (2000)

    Article  CAS  Google Scholar 

  • Endo, Y., Wu, Y., Mimura, H., Niibori, Y., Ozawa, M.: Selective uptake of cesium ions on AMP-loaded silica gels. J. Ion. Exch. 18(4), 444–449 (2007)

    Article  CAS  Google Scholar 

  • Henley, E.J., Seader, J.D., Roper, D.K.: Separation Process Principles, 3rd edn. Wiley, New York (2011)

    Google Scholar 

  • Kozeny, J.: Ueber kapillare leitung des wassers im boden. Sitzungsber. Akad. Wiss. Wien. 136, 271–306 (1927)

    Google Scholar 

  • Lin, Y., Fryxell, G.E., Wu, H., Engelhard, M.: Selective sorption of cesium using self-assembled monolayers on mesoporous supports. Environ. Sci. Technol. 35(19), 3962–3966 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Mimura, H., Kanno, T.: Distribution and fixation of cesium and strontium in zeolite A and chabazite. J. Nucl. Sci. Technol. 22(4), 284–291 (1985)

    Article  CAS  Google Scholar 

  • Mimura, H., Saito, M., Akiba, K., Onodera, Y.: Selective uptake of cesium by ammonium molybdophosphate (AMP)-calcium alginate composites. J. Nucl. Sci. Technol. 38(10), 872–878 (2001)

    Article  CAS  Google Scholar 

  • Mukai, S.R., Nishihara, H., Tamon, H.: Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals. Chem. Commun. (7), 874–875 (2004). https://doi.org/10.1039/B316597C

  • Nilchi, A., Saberi, R., Moradi, M., Azizpour, H., Zarghami, R.: Adsorption of cesium on copper hexacyanoferrate–PAN composite ion exchanger from aqueous solution. Chem. Eng. J. 172(1), 572–580 (2011)

    Article  CAS  Google Scholar 

  • Nishihara, H., Mukai, S.R., Yamashita, D., Tamon, H.: Ordered macroporous silica by ice templating. Chem. Mater. 17(3), 683–689 (2005)

    Article  CAS  Google Scholar 

  • Parajuli, D., Takahashi, A., Tanaka, H., Sato, M., Fukuda, S., Kamimura, R., Kawamoto, T.: Variation in available cesium concentration with parameters during temperature induced extraction of cesium from soil. J. Environ. Radioact. 140, 78–83 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Park, Y., Lee, Y.-C., Shin, W.S., Choi, S.-J.: Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chem. Eng. J. 162(2), 685–695 (2010)

    Article  CAS  Google Scholar 

  • Popa, A., Sasca, V., Holclajtner-Antunović, I.: The influence of surface coverage on textural, structural and catalytic properties of cesium salts of 12-molybdophosphoric acid supported on SBA-15 mesoporous silica. Microporous Mesporous Mater. 156, 127–137 (2012)

    Article  CAS  Google Scholar 

  • Prout, W.E., Russell, E.R., Groh, H.J.: Ion exchange absorption of cesium by potassium hexacyanocobalt (II) ferrate (II). J. Inorg. Nucl. Chem. 27(2), 473–479 (1965)

    Article  CAS  Google Scholar 

  • Rao, K.L.N., Shukla, J.P., Venkataramani, B.: Electron irradiation studies on ammonium molybdophosphate. J. Radioanal. Nucl. Chem. 189(1), 107–114 (1995)

    Article  CAS  Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Samanta, S.K., Theyyunni, T.K., Misra, B.M.: Column behaviour of resorcinol-formaldehyde polycondensate resin for radiocesium removal from simulated radwaste solution. J. Nucl. Sci. Technol. 32(5), 425–429 (1995)

    Article  CAS  Google Scholar 

  • Sangvanich, T., Sukwarotwat, V., Wiacek, R.J., Grudzien, R.M., Fryxell, G.E., Addleman, R.S., Timchalk, C., Yantasee, W.: Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J. Hazard. Mater. 182(1–3), 225–231 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satyanarayana, J., Murthy, G.S., Sasidhar, P.: Adsorption studies of cesium on a new inorganic exchanger ammonium molybdophosphate-alumina (AMP-Al2O3). J. Radioanal. Nucl. Chem. 242(1), 11–16 (1999)

    Article  CAS  Google Scholar 

  • Sing, K.S.W.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985)

    Article  CAS  Google Scholar 

  • Smit, J.V.R.: Ammonium salts of the heteropolyacids as cation exchangers. Nature 181(4622), 1530–1531 (1958)

    Article  CAS  Google Scholar 

  • Sydorchuk, V., Khalameida, S., Skubiszewska-Zięba, J., Leboda, R.: Synthesis and structure of AMP/oxide support. J. Therm. Anal. Calorim. 103(1), 257–265 (2011)

    Article  CAS  Google Scholar 

  • Todd, T.A., Mann, N.R., Tranter, T.J., Šebesta, F., John, J., Motl, A.: Cesium sorption from concentrated acidic tank wastes using ammonium molybdophosphate-polyacrylonitrile composite sorbents. J. Radioanal. Nucl. Chem. 254(1), 47–52 (2002)

    Article  CAS  Google Scholar 

  • Tranter, T.J., Herbst, R.S., Todd, T.A., Olson, A.L., Eldredge, H.B.: Evaluation of ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) as a cesium selective sorbent for the removal of 137Cs from acidic nuclear waste solutions. Adv. Environ. Res. 6(2), 107–121 (2002)

    Article  CAS  Google Scholar 

  • Yasunari, T.J., Stohl, A., Hayano, R.S., Burkhart, J.F., Eckhardt, S., Yasunari, T.: Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc. Natl. Acad. Sci. USA 108(49), 19530–19534: (2011)

    Article  CAS  PubMed  Google Scholar 

  • Yasutaka, T., Kawamoto, T., Komai, T.: Applicability of the acid extraction method to radioactive caesium contaminated soil. Radioisotopes 62(4), 211–218 (2013)

    Article  Google Scholar 

  • Yoshida, S., Kimura, Y., Ogino, I., Mukai, S.R.: Synthesis of a microhoneycomb-type silica-supported ammonium molybdophosphate for cesium separation. J. Chem. Eng. Jpn. 46(9), 616–619 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the promotion of Science (JSPS) Grant-in-Aid for Scientific Research (B) 24360324.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichiro Yoshida.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 856 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, S., Iwamura, S., Ogino, I. et al. Continuous-flow separation of cesium ion by ammonium molybdophosphate immobilized in a silica microhoneycomb (AMP-SMH). Adsorption 25, 1089–1098 (2019). https://doi.org/10.1007/s10450-019-00060-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-019-00060-2

Keywords

Navigation