Skip to main content
Log in

HDEHP-CMPO/SiO2-P: a promising solid-phase extractant for uranium recovery from different acidic media

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel macroporous silica-based HDEHP-CMPO impregnated polymeric solid-phase extractant showed an excellent uranium adsorption efficiency from HNO3, HCl, and H2SO4 media with the wide concentration range from the near neutral to high acidic conditions. The adsorption equilibrium data were well described with the Redlich–Peterson isotherm with the relatively high uranium adsorption capacity. Furthermore, the HDEHP-CMPO/SiO2-P showed a significant selectivity for U(VI) among the coexisting elements while the co-extraction of Fe(III) with U(VI) was observed. In desorption process, Fe(III) and U(VI) were separated and desorbed efficiently using the 1 M H2SO4 solution at 55 °C and 1 M NH4HCO3 solution at 25 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang JY, Zhang N, Zhang L, Fang Y, Deng W, Yu M, Wang Z, Li L, Liu X, Li J (2015) Adsorption of uranyl ions on amine-functionalization of MIL-101(Cr) nanoparticles by a facile coordination-based post-synthetic strategy and x-ray absorption spectroscopy studies. Sci Rep 5:13514. https://doi.org/10.1038/srep13514

    Article  Google Scholar 

  2. Wang F, Li H, Liu Q, Li Z, Li R, Zhang H, Liu L, Emelchenko GA, Wang J (2016) A graphene oxide/amidoxime hydrogel for enhanced uranium capture. Sci Rep 6:19367. https://doi.org/10.1038/srep19367

    Article  CAS  Google Scholar 

  3. Guo Y, Ren T (2017) When it is unfamiliar to me: local acceptance of planned nuclear power plants in China in the post-fukushima era. Energy Policy 100:113–125. https://doi.org/10.1016/j.enpol.2016.10.002

    Article  Google Scholar 

  4. Wu Y (2017) Public acceptance of constructing coastal/inland nuclear power plants in post-Fukushima China. Energy Policy 101:484–491. https://doi.org/10.1016/j.enpol.2016.11.008

    Article  Google Scholar 

  5. Bai Z-Q, Yuan L-Y, Zhu L, Liu Z-R, Chu S-Q, Zheng L-R, Zhang J, Chai Z-F, Shi W-Q (2015) Introduction of amino groups into acid-resistant MOFs for enhanced U(vi) sorption. J Mater Chem A 3(2):525–534. https://doi.org/10.1039/C4TA04878D

    Article  CAS  Google Scholar 

  6. Siva Kesava Raju C, Subramanian MS (2007) Sequential separation of lanthanides, thorium and uranium using novel solid phase extraction method from high acidic nuclear wastes. J Hazard Mater 145(1–2):315–322. https://doi.org/10.1016/j.jhazmat.2006.11.024

    Article  Google Scholar 

  7. Han R, Zou W, Wang Y, Zhu L (2007) Removal of uranium (VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact 93(3):127–143. https://doi.org/10.1016/j.jenvrad.2006.12.003

    Article  CAS  Google Scholar 

  8. Prabhakaran D, Subramanian MS (2004) Selective extraction of U(VI), Th(IV), and La(III) from acidic matrix solutions and environmental samples using chemically modified Amberlite XAD-16 resin. Anal Bioanal Chem 379(3):519–525. https://doi.org/10.1007/s00216-004-2600-7

    Article  CAS  Google Scholar 

  9. Mondal S, Singh D, Anitha M, Sharma J, Hubli R, Singh H (2014) New synergistic solvent mixture of DNPPA and bidentate octyl (phenyl) CMPO for enhanced extraction of uranium (VI) from phosphoric acid medium. Hydrometallurgy 147:95–102

    Article  Google Scholar 

  10. Hadadian M, Mallah MH, Moosavian MA, Safdari J, Davoudi M (2016) Separation of uranium (VI) using dispersive liquid-liquid extraction from leach liquor. Prog Nucl Energy 90:212–218. https://doi.org/10.1016/j.pnucene.2016.03.024

    Article  CAS  Google Scholar 

  11. Quinn JE, Wilkins D, Soldenhoff KH (2013) Solvent extraction of uranium from saline leach liquors using DEHPA/Alamine 336 mixed reagent. Hydrometallurgy 134–135:74–79. https://doi.org/10.1016/j.hydromet.2013.01.014

    Article  Google Scholar 

  12. Zhu Z, Pranolo Y, Cheng CY (2016) Uranium recovery from strong acidic solutions by solvent extraction with Cyanex 923 and a modifier. Miner Eng 89:77–83. https://doi.org/10.1016/j.mineng.2016.01.016

    Article  CAS  Google Scholar 

  13. Amaral JCBS, Morais CA (2010) Thorium and uranium extraction from rare earth elements in monazite sulfuric acid liquor through solvent extraction. Miner Eng 23(6):498–503. https://doi.org/10.1016/j.mineng.2010.01.003

    Article  CAS  Google Scholar 

  14. Fouad HK, Bishay AF (2010) Uranium uptake from acidic solutions using synthetic titanium and magnesium based adsorbents. J Radioanal Nucl Chem 283(3):765–772. https://doi.org/10.1007/s10967-009-0435-6

    Article  CAS  Google Scholar 

  15. Ansari SA, Mohapatra PK (2017) A review on solid phase extraction of actinides and lanthanides with amide based extractants. J Chromatogr A 1499:1–20. https://doi.org/10.1016/j.chroma.2017.03.035

    Article  CAS  Google Scholar 

  16. Kim JS, Han KS, Kim SJ, Kim S-D, Lee J-Y, Han C, Rajesh Kumar J (2016) Synergistic extraction of uranium from Korean black shale ore leach liquors using amine with phosphorous based extractant systems. J Radioanal Nucl Chem 307(2):843–854. https://doi.org/10.1007/s10967-015-4327-7

    Article  CAS  Google Scholar 

  17. Singh H, Vijayalakshmi R, Mishra S, Gupta C (2001) Studies on uranium extraction from phosphoric acid using di-nonyl phenyl phosphoric acid-based synergistic mixtures. Hydrometallurgy 59(1):69–76

    Article  CAS  Google Scholar 

  18. Singh H, Mishra SL, Vijayalakshmi R (2004) Uranium recovery from phosphoric acid by solvent extraction using a synergistic mixture of di-nonyl phenyl phosphoric acid and tri-n-butyl phosphate. Hydrometallurgy 73(1–2):63–70. https://doi.org/10.1016/j.hydromet.2003.08.006

    Article  CAS  Google Scholar 

  19. Biswas S, Pathak PN, Singh DK, Roy SB, Manchanda VK (2012) Evaluation of dinonyl phenyl phosphoric acid (DNPPA) and its synergistic mixtures with neutral oxodonors for extraction and recovery of uranium from nitric acid medium. Int J Miner Process 104–105:17–23. https://doi.org/10.1016/j.minpro.2011.11.011

    Article  Google Scholar 

  20. Meera R, Luxmi Varma R, Reddy MLP (2004) Enhanced extraction of thorium(IV) and uranium(VI) with 1-phenyl-3-methyl-4-pivaloyl-5-pyrazolone in the presence of various neutral organophosphorus extractants. Radiochim Acta. https://doi.org/10.1524/ract.92.1.17.25402

    Google Scholar 

  21. Sato T (1964) The synergic effect of tri-n-butyl phosphate in the extraction of uranium (VI) from sulphuric acid solutions by di-(2-ethylhexyl)-phosphoric acid. J Inorg Nucl Chem 26(2):311–319. https://doi.org/10.1016/0022-1902(64)80075-0

    Article  CAS  Google Scholar 

  22. Sato T (1965) The extraction of uranium (VI) from hydrochloric acid solutions by DI-(2-ethylhexyl)-phosphoric acid. J Inorg Nucl Chem 27(8):1853–1860. https://doi.org/10.1016/0022-1902(65)80329-3

    Article  CAS  Google Scholar 

  23. Yusan SD, Akyil S (2008) Sorption of uranium(VI) from aqueous solutions by akaganeite. J Hazard Mater 160(2–3):388–395. https://doi.org/10.1016/j.jhazmat.2008.03.009

    Article  CAS  Google Scholar 

  24. Zhang X, Ji L, Wang J, Li R, Liu Q, Zhang M, Liu L (2012) Removal of uranium(VI) from aqueous solutions by magnetic Mg–Al layered double hydroxide intercalated with citrate: kinetic and thermodynamic investigation. Colloids Surf A 414:220–227. https://doi.org/10.1016/j.colsurfa.2012.08.031

    Article  CAS  Google Scholar 

  25. Michard P, Guibal E, Vincent T, Le Cloirec P (1996) Sorption and desorption of uranyl ions by silica gel: pH, particle size and porosity effects. Microporous Mater 5(5):309–324. https://doi.org/10.1016/0927-6513(95)00067-4

    Article  CAS  Google Scholar 

  26. Belgacem A, Rebiai R, Hadoun H, Khemaissia S, Belmedani M (2014) The removal of uranium (VI) from aqueous solutions onto activated carbon developed from grinded used tire. Environ Sci Pollut Res 21(1):684–694. https://doi.org/10.1007/s11356-013-1940-2

    Article  CAS  Google Scholar 

  27. Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296(2):434–441. https://doi.org/10.1016/j.jcis.2005.09.045

    Article  CAS  Google Scholar 

  28. Wang G, Liu J, Wang X, Xie Z, Deng N (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168(2):1053–1058

    Article  CAS  Google Scholar 

  29. Abdi S, Nasiri M, Mesbahi A, Khani MH (2017) Investigation of uranium (VI) adsorption by polypyrrole. J Hazard Mater 332:132–139. https://doi.org/10.1016/j.jhazmat.2017.01.013

    Article  CAS  Google Scholar 

  30. Tabushi I, Kobuke Y, Nishiya T (1979) Extraction of uranium from seawater by polymer-bound macrocyclic hexaketone. Nature 280(5724):665–666

    Article  CAS  Google Scholar 

  31. Meng H, Gao Q, Li Z, Wang X, Ma F, Zhou W, Zhang L (2015) Synthesis of a highly dense and selective imprinted polymer via pre-irradiated surface-initiated graft polymerization. J Mater Chem A 3(25):13237–13243. https://doi.org/10.1039/C5TA02279G

    Article  CAS  Google Scholar 

  32. Kilincarslan A, Akyil S (2005) Uranium adsorption characteristic and thermodynamic behavior of clinoptilolite zeolite. J Radioanal Nucl Chem 264(3):541–548. https://doi.org/10.1007/s10967-005-0750-5

    Article  CAS  Google Scholar 

  33. Han R, Zou W, Wang Y, Zhu L (2007) Removal of uranium (VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact 93(3):127–143

    Article  CAS  Google Scholar 

  34. Awwad NS, Daifullah AAM (2005) Preconcentration of U(VI) from aqueous solutions after sorption using Sorel’s cement in dynamic mode. J Radioanal Nucl Chem 264(3):623–628. https://doi.org/10.1007/s10967-005-0762-1

    Article  CAS  Google Scholar 

  35. Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies. Bioresour Technol 96(11):1241–1248. https://doi.org/10.1016/j.biortech.2004.10.016

    Article  CAS  Google Scholar 

  36. Swarnalatha K, Ayoob S (2016) Adsorption studies on coir pith for heavy metal removal. Int J Sustain Eng 9(4):259–265. https://doi.org/10.1080/19397038.2016.1152323

    Article  Google Scholar 

  37. Psareva TS, Zakutevskyy OI, Chubar NI, Strelko VV, Shaposhnikova TO, Carvalho JR, Correia MJN (2005) Uranium sorption on cork biomass. Colloids Surf A 252(2–3):231–236. https://doi.org/10.1016/j.colsurfa.2004.10.115

    Article  CAS  Google Scholar 

  38. Missana T, García-Gutiérrez M, Maffiotte C (2003) Experimental and modeling study of the uranium (VI) sorption on goethite. J Colloid Interface Sci 260(2):291–301. https://doi.org/10.1016/S0021-9797(02)00246-1

    Article  CAS  Google Scholar 

  39. El-Maghrabi HH, Abdelmaged SM, Nada AA, Zahran F, El-Wahab SA, Yahea D, Hussein GM, Atrees MS (2017) Magnetic graphene based nanocomposite for uranium scavenging. J Hazard Mater 322:370–379. https://doi.org/10.1016/j.jhazmat.2016.10.007

    Article  CAS  Google Scholar 

  40. Zhou L, Bosscher M, Zhang C, Özçubukçu S, Zhang L, Zhang W, Li CJ, Liu J, Jensen MP, Lai L, He C (2014) A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat Chem 6(3):236–241. https://doi.org/10.1038/nchem.1856, http://www.nature.com/nchem/journal/v6/n3/abs/nchem.1856.html#supplementary-information

  41. Sprynskyy M, Kowalkowski T, Tutu H, Cukrowska EM, Buszewski B (2011) Adsorption performance of talc for uranium removal from aqueous solution. Chem Eng J 171(3):1185–1193. https://doi.org/10.1016/j.cej.2011.05.022

    Article  CAS  Google Scholar 

  42. Li F, Gao Z, Li X, Fang L (2014) The effect of Paecilomyces catenlannulatus on removal of U(VI) by illite. J Environ Radioact 137:31–36. https://doi.org/10.1016/j.jenvrad.2014.06.014

    Article  Google Scholar 

  43. Saito T, Brown S, Chatterjee S, Kim J, Tsouris C, Mayes RT, Kuo L-J, Gill G, Oyola Y, Janke CJ, Dai S (2014) Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization. J Mater Chem A 2(35):14674–14681. https://doi.org/10.1039/C4TA03276D

    Article  CAS  Google Scholar 

  44. Sylwester ER, Hudson EA, Allen PG (2000) The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite. Geochim Cosmochim Acta 64(14):2431–2438. https://doi.org/10.1016/S0016-7037(00)00376-8

    Article  CAS  Google Scholar 

  45. Ling L, W-x Zhang (2015) Enrichment and encapsulation of uranium with iron nanoparticle. J Am Chem Soc 137(8):2788–2791. https://doi.org/10.1021/ja510488r

    Article  CAS  Google Scholar 

  46. Z-b Zhang, Y-f Qiu, Dai Y, P-f Wang, Gao B, Z-m Dong, X-h Cao, Y-h Liu, Z-g Le (2016) Synthesis and application of sulfonated graphene oxide for the adsorption of uranium(VI) from aqueous solutions. J Radioanal Nucl Chem 310(2):547–557. https://doi.org/10.1007/s10967-016-4813-6

    Article  Google Scholar 

  47. Lee HI, Kim JH, Kim JM, Kim S, Park J-N, Hwang JS, Yeon J-W, Jung Y (2010) Application of ordered nanoporous silica for removal of uranium ions from aqueous solutions. J Nanosci Nanotechnol 10(1):217–221. https://doi.org/10.1166/jnn.2010.1498

    Article  CAS  Google Scholar 

  48. Sprynskyy M, Kovalchuk I, Buszewski B (2010) The separation of uranium ions by natural and modified diatomite from aqueous solution. J Hazard Mater 181(1–3):700–707. https://doi.org/10.1016/j.jhazmat.2010.05.069

    Article  CAS  Google Scholar 

  49. Shuibo X, Chun Z, Xinghuo Z, Jing Y, Xiaojian Z, Jingsong W (2009) Removal of uranium (VI) from aqueous solution by adsorption of hematite. J Environ Radioact 100(2):162–166. https://doi.org/10.1016/j.jenvrad.2008.09.008

    Article  Google Scholar 

  50. Li X, Li F, Jin Y, Jiang C (2015) The uptake of uranium by tea wastes investigated by batch, spectroscopic and modeling techniques. J Mol Liq 209:413–418. https://doi.org/10.1016/j.molliq.2015.06.014

    Article  CAS  Google Scholar 

  51. Zhao Y, Liu C, Feng M, Chen Z, Li S, Tian G, Wang L, Huang J, Li S (2010) Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon. J Hazard Mater 176(1–3):119–124. https://doi.org/10.1016/j.jhazmat.2009.11.005

    Article  CAS  Google Scholar 

  52. Kadous A, Didi MA, Villemin D (2010) A new sorbent for uranium extraction: ethylenediamino tris(methylenephosphonic) acid grafted on polystyrene resin. J Radioanal Nucl Chem 284(2):431–438. https://doi.org/10.1007/s10967-010-0495-7

    Article  CAS  Google Scholar 

  53. Zhang A, Hu Q, Wang W, Kuraoka E (2008) Application of a macroporous silica-based CMPO-impregnated polymeric composite in group partitioning of long-lived minor actinides from highly active liquid by extraction chromatography. Ind Eng Chem Res 47(16):6158–6165

    Article  CAS  Google Scholar 

  54. Zha F, Wang X, Wang X, Khayambashi A, Wei Y, Tang F, He L (2017) Synthesis of a novel silica-based macroporous HNA/SiO2-P adsorbent and its adsorption behavior for uranium from aqueous solutions. J Radioanal Nucl Chem 311(3):1793–1802. https://doi.org/10.1007/s10967-016-5141-6

    Article  CAS  Google Scholar 

  55. Merdivan M, Düz MZ, Hamamci C (2001) Sorption behaviour of uranium (VI) with N, N-dibutyl-N′-benzoylthiourea impregnated in Amberlite XAD-16. Talanta 55(3):639–645

    Article  CAS  Google Scholar 

  56. Wang H, Ma L, Cao K, Geng J, Liu J, Song Q, Yang X, Li S (2012) Selective solid-phase extraction of uranium by salicylideneimine-functionalized hydrothermal carbon. J Hazard Mater 229–230:321–330. https://doi.org/10.1016/j.jhazmat.2012.06.004

    Article  Google Scholar 

  57. Shu Q, Khayambashi A, Zou Q, Wang X, Wei Y, He L, Tang F (2017) Studies on adsorption and separation characteristics of americium and lanthanides using a silica-based macroporous bi(2-ethylhexyl) phosphoric acid (HDEHP) adsorbent. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-017-5293-z

    Google Scholar 

  58. Shu Q, Khayambashi A, Wang X, Wei Y (2018) Studies on adsorption of rare earth elements from nitric acid solution with macroporous silica-based bis(2-ethylhexyl)phosphoric acid impregnated polymeric adsorbent. Adsorpt Sci Technol. https://doi.org/10.1177/0263617417748112

    Google Scholar 

  59. Shu Q, Khayambashi A, Wang X, Wang X, Feng L, Wei Y (2017) Effects of γ irradiation on bis(2-ethylhexyl)phosphoric acid supported by macroporous silica-based polymeric resins. Radiochim Acta. https://doi.org/10.1515/ract-2017-2758

    Google Scholar 

  60. Zhang A, Zhu Y, Liu Y, Chai Z (2011) Preparation of a macroporous silica-based pyridine impregnated material and its adsorption for palladium. Ind Eng Chem Res 50(11):6898–6905. https://doi.org/10.1021/ie1021893

    Article  CAS  Google Scholar 

  61. Khayambashi A, Wang X, Wei Y (2016) Solid phase extraction of uranium (VI) from phosphoric acid medium using macroporous silica-based D2EHPA-TOPO impregnated polymeric adsorbent. Hydrometallurgy 164:90–96

    Article  CAS  Google Scholar 

  62. Wei Y, Kumagai M, Takashima Y, Modolo G, Odoj R (2000) Studies on the separation of minor actinides from high-level wastes by extraction chromatography using novel silica-based extraction resins. Nucl Technol 132(3):413–423

    Article  CAS  Google Scholar 

  63. Zhang A, Wei Y, Kumagai M (2004) Synthesis of a novel macroporous silica-based polymeric material containing 4, 4′, (5′)-di (tert-butylcyclohexano)-18-crown-6 functional group and its adsorption mechanism for strontium. React Funct Polym 61(2):191–202

    Article  CAS  Google Scholar 

  64. Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X (2014) Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283. https://doi.org/10.1016/j.cej.2013.09.034

    Article  CAS  Google Scholar 

  65. Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  66. Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186(1):458–465

    Article  CAS  Google Scholar 

  67. Freundlich U (1906) Uber die adsorption in losungen. J Phys Chem 57:385–470

    CAS  Google Scholar 

  68. Weber TW, Chakravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AIChE J 20(2):228–238

    Article  CAS  Google Scholar 

  69. Wu F-C, Liu B-L, Wu K-T, Tseng R-L (2010) A new linear form analysis of Redlich–Peterson isotherm equation for the adsorptions of dyes. Chem Eng J 162(1):21–27. https://doi.org/10.1016/j.cej.2010.03.006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuezhou Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khayambashi, A., Shu, Q., Wei, Y. et al. HDEHP-CMPO/SiO2-P: a promising solid-phase extractant for uranium recovery from different acidic media. J Radioanal Nucl Chem 316, 221–231 (2018). https://doi.org/10.1007/s10967-018-5734-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5734-3

Keywords

Navigation