Skip to main content

Advertisement

Log in

Traveling Wave Solutions in a Nonlocal Dispersal SIR Epidemic Model with General Nonlinear Incidence

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, for a class of nonlocal dispersal SIR epidemic models with nonlinear incidence, we study the existence of traveling waves connecting the disease-free equilibrium with endemic equilibrium. We obtain that the existence of traveling waves depends on the minimal wave speed \(c^{*}\) and basic reproduction number \(\mathcal{R}_{0}\). That is, if \(\mathcal{R}_{0}>1\) and \(c> c^{*}\) then the model has a traveling wave connecting the disease-free equilibrium with endemic equilibrium. Otherwise, if \(\mathcal{R}_{0}>1\) and \(0< c< c^{*}\), then there does not exist the traveling wave connecting the disease-free equilibrium with endemic equilibrium. The numerical simulations verify the theoretical results. Our results improve and generalize some known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allen, L., Bolker, B., Lou, Y., Nevai, A.: Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin. Dyn. Syst. 21, 1–20 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kuniya, T., Wang, J.: Lyapunov functions and global stability for a spatially diffusive SIR epidemic model. Appl. Anal. 96, 1935–1960 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ai, S., Albashaireh, R.: Traveling waves in spatial SIRS models. J. Dyn. Differ. Equ. 26, 143–164 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Saccomandi, G.: The spatial diffusion of diseases. Math. Comput. Model. 25, 83–95 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lutscher, F., Pachepsky, E., Lewis, M.: The effect of dispersal patterns on stream populations. SIAM J. Appl. Math. 65, 1305–1327 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hattaf, K., Yousfi, N.: Global stability for reaction-diffusion equations in biology. Comput. Math. Appl. 66, 1488–1497 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chow, Y., Jang, S.: Coexistence in a discrete competition model with dispersal. J. Differ. Equ. Appl. 19, 615–632 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hutson, V., Martinez, S., Mischaikow, K., Vickers, G.: The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, H., Peng, R., Wang, F.: Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model. J. Differ. Equ. 262, 885–913 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Peng, R., Zhao, X.: A reaction-diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25, 1451–1471 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cui, R., Lou, Y.: A spatial SIS model in advective heterogeneous environments. J. Differ. Equ. 261, 3305–3343 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lutscher, F., McCauley, E., Lewis, M.: Spatial patterns and coexistence mechanisms in systems with unidirectional flow. Theor. Popul. Biol. 71, 267–277 (2007)

    Article  MATH  Google Scholar 

  13. Chen, X.: Existence, uniqueness and asymptotic stability of travelling waves in non-local evolution equations. Adv. Differ. Equ. 2, 125–160 (1997)

    Google Scholar 

  14. Fang, J., Zhao, X.: Existence and uniqueness of traveling waves for non-monotone integral equations with applications. J. Differ. Equ. 248, 2199–2226 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gan, Q., Xu, R., Yang, P.: Traveling waves of a delayed SIRS epidemic model with spatial diffusion. Nonlinear Anal., Real World Appl. 12, 52–68 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, G., Li, W., Wang, Z.: Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity. J. Differ. Equ. 252, 5096–5124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Adjemian, J., Foley, P., Gage, K., et al.: Initiation and spread of traveling waves of plague, Yersinia pestis, in the Western United States. Am. J. Trop. Med. Hyg. 76(2), 365–375 (2007)

    Article  Google Scholar 

  18. Maidana, N., Yang, H.: Describing the geographic spread of Dengue disease by traveling waves. Math. Biosci. 251, 64–77 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, F., Li, Y., Li, W., Wang, Z.: Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model. Discrete Contin. Dyn. Syst., Ser. B 18, 1969–1993 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Zhou, K., Lin, Y., Wang, Q.: Existence and asymptotics of traveling wave fronts for a delayed nonlocal diffusion model with a quiescent stage. Commun. Nonlinear Sci. Numer. Simul. 18, 3006–3013 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Y., Li, W., Yang, F.: Traveling waves for a nonlocal dispersal SIR model with delay and external supplies. Appl. Math. Comput. 247, 723–740 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Zhu, C., Li, W., Yang, F.: Traveling waves in a nonlocal dispersal SIRS model with relapse. Comput. Math. Appl. 73, 1707–1723 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, Z., Wu, J., Liu, R.: Traveling waves of the spread of avian influenza. Proc. Am. Math. Soc. 140, 3931–3946 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weng, P., Zhao, X.: Spreading speed and traveling waves for a multi-type SIS epidemic model. J. Dyn. Differ. Equ. 229, 270–296 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Han, B., Wang, Z., Feng, Z.: Traveling waves for the nonlocal diffusive single species model with Allee effect. J. Math. Anal. Appl. 443, 243–264 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, F., Li, W.: Traveling waves in a nonlocal dispersal SIR model with critical wave speed. J. Math. Anal. Appl. 458, 1131–1146 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, W., Yang, F.: Traveling waves for a nonlocal dispersal SIR model with standard incidence. J. Integral Equ. Appl. 26, 243–273 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Capasso, V., Serio, G.: A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42, 43–61 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, W., Levin, S., Isawa, Y.: Influence of nonlinear incidence rates upon the behaviour of SIRS epidemiological models. J. Math. Biol. 23, 187–204 (1986)

    Article  MathSciNet  Google Scholar 

  30. Liu, W., Hethcote, H., Levin, S.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25, 359–380 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ducrot, A., Magal, P.: Travelling wave solutions for an infection-age structured epidemic model with external supplies. Nonlinearity 24, 2891–2911 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, Y., Li, W., Lin, G.: Traveling waves of a delayed diffusive SIR epidemic model. Commun. Pure Appl. Anal. 14, 1001–1022 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fu, S.: Traveling waves for a diffusive SIR model with delay. J. Math. Anal. Appl. 435, 20–37 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, T., Wang, W., Wang, K.: Minimal wave speed for a class of non-cooperative diffusion-reaction system. J. Differ. Equ. 260, 2763–2791 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhao, L., Wang, Z., Ruan, S.: Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. J. Math. Biol. 77, 1871–1915 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, W., Ma, W.: Travelling wave solutions for a nonlocal dispersal HIV infection dynamical model. Math. Anal. Appl. 457, 868–889 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hadeler, K., Castillo, C.: A core group model for disease transmission. Math. Biosci. 128, 41–55 (1995)

    Article  MATH  Google Scholar 

  38. Srivastav, A., Ghosh, M.: Modeling the transmission dynamics of malaria with saturated treatment: a case study of India. J. Appl. Math. Comput. (2020). https://doi.org/10.1007/s12190-020-01469-7

    Article  Google Scholar 

  39. Zhou, J., Xu, J., Wei, J.: Existence and non-existence of traveling wave solutions for a nonlocal dispersal SIR epidemic model with nonlinear incidence rate. Nonlinear Anal., Real World Appl. 41, 204–231 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Smith, H., Zhao, X.: Global asymptotic stability of traveling waves in delayed reaction-diffusion equations. SIAM J. Math. Anal. 31, 514–534 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Liang, X., Zhao, X.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  43. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  44. Smith, H.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Math. Surveys Monogr., vol. 41. Am. Math. Soc., Providence, R.I (1995)

    MATH  Google Scholar 

  45. Zhao, X.: Dynamical Systems in Population Biology. Springer, New York (2003)

    Book  MATH  Google Scholar 

  46. Qiu, Z., Feng, Z.: Transmission dynamics of an influenza model with vaccination and antiviral treatment. Bull. Math. Biol. 72, 1–33 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kuniyaa, T., Wang, J.: Global dynamics of an SIR epidemic model with nonlocal diffusion. Nonlinear Anal., Real World Appl. 43, 262–282 (2018)

    Article  MathSciNet  Google Scholar 

  48. Rawal, N., Shen, W.: Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications. J. Dyn. Differ. Equ. 24, 927–954 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sun, J., Yang, F., Li, W.: A nonlocal dispersal equation arising from a selection-migration model in genetics. J. Differ. Equ. 257, 1372–1402 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Teng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Natural Science Foundation of China (Grant No. 11771373, 11861065) and the Natural Science Foundation of Xinjiang Province of China (Grant No. 2016D03022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Teng, Z. Traveling Wave Solutions in a Nonlocal Dispersal SIR Epidemic Model with General Nonlinear Incidence. Acta Appl Math 175, 4 (2021). https://doi.org/10.1007/s10440-021-00432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-021-00432-3

Keywords

Navigation