Skip to main content
Log in

Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

When the traditional assumption that the incidence rate is proportional to the product of the numbers of infectives and susceptibles is dropped, the SIRS model can exhibit qualitatively different dynamical behaviors, including Hopf bifurcations, saddle-node bifurcations, and homoclinic loop bifurcations. These may be important epidemiologically in that they demonstrate the possibility of infection outbreak and collapse, or autonomous periodic coexistence of disease and host. The possible mechanisms leading to nonlinear incidence rates are discussed. Finally, a modified general criterion for supercritical or subcritical Hopf bifurcation of 2-dimensional systems is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. M., May, R. M.: Population biology of infectious diseases: pt.1. Nature 280, 361–367 (1979)

    Google Scholar 

  • Aron, J., Schwartz, I.: Seasonality and period-doubling bifurcation in an epidemic model. J. Theor. Biol. 110, 665–679 (1984)

    Google Scholar 

  • Bailey, N. T. J.: The mathematical theory of infectious diseases and its applications 2nd edn. London: Griffin 1975

    Google Scholar 

  • Capasso, V., Serio, G.: A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42, 41–61 (1978)

    Google Scholar 

  • Chow, S.-N., Hale, J. K.: Methods of bifurcation theory, pp. 353–360. Berlin Heidelberg New York: Springer 1982

    Google Scholar 

  • Cunningham, J.: A deterministic model for measles. Z. Naturforsch. 34c, 647–648 (1979)

    Google Scholar 

  • Dietz, K.: The incidence of infectious diseases under the influence of seasonal fluctuations. Lect. Notes Biomath. 11, 1–15 (1976)

    Google Scholar 

  • Gabriel, J. P., Hanisch, H., Hirsch, W. M.: Dynamic equilibria of helminthic infections? In: Chapman, D. G., Gallucci, V. F. (eds.) Quantitative population dynamics. Intern. Cooperative Publ. House, Maryland, Stat. Ecology Series 13, 83–104, 1981

  • Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields,.150–156, 364–376. Berlin Heidelberg New York Tokyo: Springer 1983

    Google Scholar 

  • Hethcote, H. W., Stech, H. W., Van den Driessche, P.: Nonlinear oscillations in epidemic models. SIAM J. Appl. Math. 40, 1–9 (1981a)

    Google Scholar 

  • Hethcote, H. W., Stech, H. W., Van den Driessche, P.: Periodicity and stability in epidemic models: a survey. In: Busenberg, S. N., Cooke, K. L. (eds.) Differential equations and applications in ecology, epidemics, and population problems, pp. 65–82. New York London Toronto Sydney San Francisco: Academic Press 1981b

    Google Scholar 

  • London, W. P., Yorke, J. A.: Recurrent outbreak of measles, chickenpox, and mumps: I. Seasonal variation in contact rates. Am. J. Epidemiology 98, 458–468 (1973)

    Google Scholar 

  • May, R. M., Anderson, R. M.: Population biology of infectious diseases: pt. 2. Nature 280, 455–461 (1979)

    Google Scholar 

  • Rand, R. H.: Derivation of the Hopf bifurcation formula using Lindstedt's perturbation method and MACSYMA. In: Pavelle, R. (ed.) Applications of computer algebra. Klumer Academic Pub. 1985

  • Schenzle, D.: An age-structured model of pre-and post-vaccination measles transmission. IMA J. Math. Applied in Med. Biol. 1, 169–191 (1984)

    Google Scholar 

  • Schwartz, I. B.: Multiple stable recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models. J. Math. Biol., 21, 347–362 (1985)

    Google Scholar 

  • Severo, N. C.: Generalizations of some stochastic epidemic models. Math. Biosci. 4, 395–402 (1969)

    Google Scholar 

  • Wilson, E. B., Worcester, J.: The law of mass action in epidemiology. Proc. N. A. S. 31, 24–34 (1945a)

    Google Scholar 

  • Wilson, E. B., Worcester, J.: The law of mass action in epidemiology, II. Proc. N. A. S. 31, 109–116 (1945b)

    Google Scholar 

  • Yorke, J. A., London, W. P.: Recurrent outbreak of measles, chickenpox, and mumps: II. Am. J. Epidemiology 98, 469–482 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Wm., Levin, S.A. & Iwasa, Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biology 23, 187–204 (1986). https://doi.org/10.1007/BF00276956

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276956

Key words

Navigation