Skip to main content
Log in

Results of the Interlaboratory Computational Fluid Dynamics Study of the FDA Benchmark Blood Pump

  • S.I. : Modeling for Advancing Regulatory Science
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Computational fluid dynamics (CFD) is widely used to simulate blood-contacting medical devices. To be relied upon to inform high-risk decision making, however, model credibility should be demonstrated through validation. To provide robust data sets for validation, researchers at the FDA and collaborators developed two benchmark medical device flow models: a nozzle and a centrifugal blood pump. Experimental measurements of the flow fields and hemolysis were acquired using each model. Concurrently, separate open interlaboratory CFD studies were performed in which participants from around the world, who were blinded to the measurements, submitted CFD predictions of each benchmark model. In this study, we report the results of the interlaboratory CFD study of the FDA benchmark blood pump. We analyze the results of 24 CFD submissions using a wide range of different flow solvers, methods, and modeling parameters. To assess the accuracy of the CFD predictions, we compare the results with experimental measurements of three quantities of interest (pressure head, velocity field, and hemolysis) at different pump operating conditions. We also investigate the influence of different CFD methods and modeling choices used by the participants. Our analyses reveal that, while a number of CFD submissions accurately predicted the pump performance for individual cases, no single participant was able to accurately predict all quantities of interest across all conditions. Several participants accurately predicted the pressure head at all conditions and the velocity field in all but one or two cases. Only one of the eight participants who submitted hemolysis results accurately predicted absolute plasma free hemoglobin levels at a majority of the conditions, though most participants were successful at predicting relative hemolysis levels between conditions. Overall, this study highlights the need to validate CFD modeling of rotary blood pumps across the entire range of operating conditions and for all quantities of interest, as some operating conditions and regions (e.g., the pump diffuser) are more challenging to accurately predict than others. All quantities of interest should be validated because, as shown here, it is possible to accurately predict hemolysis despite having relatively inaccurate predictions of the flow field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1

Adapted from Hariharan et al.16

FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10
FIGURE 11

Similar content being viewed by others

References

  1. ASME V&V 40-2018. Assessing Credibility of Computational Modeling Through Verification and Validation: Application to Medical Devices. New York, NY: American Society of Mechanical Engineers, 2018.

    Google Scholar 

  2. Aycock, K. I., R. L. Campbell, F. C. Lynch, K. B. Manning, and B. A. Craven. The importance of hemorheology and patient anatomy on the hemodynamics in the inferior vena cava. Ann. Biomed. Eng. 44:3568–3582, 2016.

    Article  Google Scholar 

  3. Aycock, K. I., R. L. Campbell, F. C. Lynch, K. B. Manning, and B. A. Craven. Computational predictions of the embolus-trapping performance of an IVC filter in patient-specific and idealized IVC geometries. Biomech. Model. Mechanobiol. 16:1957–1969, 2017.

    Article  Google Scholar 

  4. Aycock, K. I., R. L. Campbell, K. B. Manning, S. P. Sastry, S. M. Shontz, F. C. Lynch, and B. A. Craven. A computational method for predicting inferior vena cava filter performance on a patient-specific basis. J. Biomech. Eng.136:081003, 2014.

    Article  Google Scholar 

  5. Bianchi, M., G. Marom, R. P. Ghosh, O. M. Rotman, P. Parikh, L. Gruberg, and D. Bluestein. Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage. Biomech. Model. Mechanobiol. 18:435, 2018.

    Article  Google Scholar 

  6. Chiastra, C., S. Morlacchi, D. Gallo, U. Morbiducci, R. Cardenes, I. Larrabide, and F. Migliavacca. Computational fluid dynamic simulations of image-based stented coronary bifurcation models. J. R. Soc. Interface. 10:20130193–20130193, 2013.

    Article  Google Scholar 

  7. Craven, B. A., K. I. Aycock, L. H. Herbertson, and R. A. Malinauskas. A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices. Biomech. Model. Mechanobiol. 18:1005–1030, 2019.

    Article  Google Scholar 

  8. Craven, B. A., M. M. Faghih, K. I. Aycock, and E. M. Kolahdouz. A Poisson equation method for prescribing fully developed non-Newtonian inlet conditions for computational fluid dynamics simulations in models of arbitrary cross-section. Math. Comput. Simul. 194:523–538, 2022.

    Article  Google Scholar 

  9. Dixon, S. L., and C. A. Hall. Fluid Mechanics and Thermodynamics of Turbomachinery. Oxford: Butterworth-Heinemann, 2010.

    Google Scholar 

  10. Elkins, C. J., and M. T. Alley. Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp. Fluids. 43:823–858, 2007.

    Article  CAS  Google Scholar 

  11. Elkins, C., M. Markl, N. Pelc, and J. Eaton. 4D Magnetic resonance velocimetry for mean velocity measurements in complex turbulent flows. Exp. Fluids. 34:494–503, 2003.

    Article  Google Scholar 

  12. FDA. Reporting of Computational Modeling Studies in Medical Device Submissions: Guidance for Industry and Food and Drug Administration Staff. https://www.fda.gov/media/87586/download, 2016.

  13. Fraser, K. H., T. Zhang, M. Ertan Taskin, B. P. Griffith, and Z. J. Wu. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J. Biomech. Eng. 134:081002, 2012.

    Article  Google Scholar 

  14. Good, B. C., and K. B. Manning. Computational modeling of the Food and Drug Administration’s benchmark centrifugal blood pump. Artif. Organs. 44:E263–E276, 2020.

    Article  Google Scholar 

  15. Gundert, T. J., A. L. Marsden, W. Yang, and J. F. LaDisa. Optimization of cardiovascular stent design using computational fluid dynamics. J. Biomech. Eng.134:011002, 2012.

    Article  Google Scholar 

  16. Hariharan, P., K. I. Aycock, M. Buesen, S. W. Day, B. C. Good, L. H. Herbertson, U. Steinseifer, K. B. Manning, B. A. Craven, and R. A. Malinauskas. Inter-laboratory characterization of the velocity field in the FDA blood pump model using particle image velocimetry (PIV). Cardiovasc. Eng. Technol. 9:623–640, 2018.

    Article  Google Scholar 

  17. Hariharan, P., M. Giarra, V. Reddy, S. W. Day, K. B. Manning, S. Deutsch, S. F. Stewart, M. R. Myers, M. R. Berman, G. W. Burgreen, E. G. Paterson, and R. A. Malinauskas. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. J. Biomech. Eng.133:041002, 2011.

    Article  Google Scholar 

  18. Herbertson, L. H., S. E. Olia, A. Daly, C. P. Noatch, W. A. Smith, M. V. Kameneva, and R. A. Malinauskas. Multilaboratory study of flow-induced hemolysis using the FDA benchmark nozzle model. Artif. Organs. 39:237–248, 2015.

    Article  CAS  Google Scholar 

  19. ISO 14708-5:2020. Implants for Surgery—Active Implantable Medical Devices—Part 5: Circulatory Support Devices. Geneva, CH: International Organization for Standardization, 2020.

    Google Scholar 

  20. Kheradvar, A., E. M. Groves, A. Falahatpisheh, M. K. Mofrad, S. H. Alavi, R. Tranquillo, L. P. Dasi, C. A. Simmons, K. J. Grande-Allen, C. J. Goergen, F. Baaijens, S. H. Little, S. Canic, and B. Griffith. Emerging trends in heart valve engineering: part IV. Computational modeling and experimental studies. Ann. Biomed. Eng. 43:2314–2333, 2015.

    Article  Google Scholar 

  21. Lee, J. H., A. D. Rygg, E. M. Kolahdouz, S. Rossi, S. M. Retta, N. Duraiswamy, L. N. Scotten, B. A. Craven, and B. E. Griffith. Fluid-structure interaction models of bioprosthetic heart valve dynamics in an experimental pulse duplicator. Ann. Biomed. Eng. 48:1475–1490, 2020.

    Article  Google Scholar 

  22. Malinauskas, R. A., P. Hariharan, S. W. Day, L. H. Herbertson, M. Buesen, U. Steinseifer, K. I. Aycock, B. C. Good, S. Deutsch, K. B. Manning, and B. A. Craven. FDA benchmark medical device flow models for CFD validation. ASAIO J. 63:150–160, 2017.

    Article  Google Scholar 

  23. Markl, M., F. P. Chan, M. T. Alley, K. L. Wedding, M. T. Draney, C. J. Elkins, D. W. Parker, R. Wicker, C. A. Taylor, R. J. Herfkens, and N. J. Pelc. Time-resolved three-dimensional phase-contrast MRI. J. Magn. Resonance Imaging. 17:499–506, 2003.

    Article  Google Scholar 

  24. Marsden, A. L., Y. Bazilevs, C. C. Long, and M. Behr. Recent advances in computational methodology for simulation of mechanical circulatory assist devices. Wiley Interdiscip. Rev. Syst. Biol. Med. 6:169–188, 2014.

    Article  Google Scholar 

  25. Morrison, T. M., M. L. Dreher, S. Nagaraja, L. M. Angelone, and W. Kainz. The role of computational modeling and simulation in the total product life cycle of peripheral vascular devices. J. Med. Devices.11:024503, 2017.

    Article  Google Scholar 

  26. Mueller, M., H. Schima, H. Engelhardt, A. Salat, D. Olsen, U. Losert, and E. Wolner. In vitro hematological testing of rotary blood pumps: remarks on standardization and data interpretation. Artif. Organs. 17:103–110, 1993.

    Article  CAS  Google Scholar 

  27. Najjari, M. R., J. A. Hinke, K. V. Bulusu, and M. W. Plesniak. On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments. Exp. Fluids. 2016. https://doi.org/10.1007/s00348-016-2185-x.

    Article  Google Scholar 

  28. Oberkampf, W. L., and C. J. Roy. Verification and Validation in Scientific Computing. Cambridge, UK: Cambridge University Press, 2010.

    Book  Google Scholar 

  29. Pant, S., G. Limbert, N. P. Curzen, and N. W. Bressloff. Multiobjective design optimisation of coronary stents. Biomaterials. 32:7755–7773, 2011.

    Article  CAS  Google Scholar 

  30. Pauli, L., J. Nam, M. Pasquali, and M. Behr. Transient stress-based and strain-based hemolysis estimation in a simplified blood pump. Int. J. Numer. Methods Biomed. Eng. 29:1148–1160, 2013.

    Article  Google Scholar 

  31. Roache, P. J. Fundamentals of Verification and Validation. Socorro, New Mexico: Hermosa Publishers, 2009.

    Google Scholar 

  32. Song, X., A. L. Throckmorton, H. G. Wood, J. F. Antaki, and D. B. Olsen. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif. Organs. 27:938–941, 2003.

    Article  Google Scholar 

  33. Stewart, S. F., P. Hariharan, E. G. Paterson, G. W. Burgreen, V. Reddy, S. W. Day, M. Giarra, K. B. Manning, S. Deutsch, M. R. Berman, M. R. Myers, and R. A. Malinauskas. Results of FDA’s first interlaboratory computational study of a nozzle with a sudden contraction and conical diffuser. Cardiovasc. Eng. Technol. 4:374–391, 2013.

    Article  Google Scholar 

  34. Stewart, S. F., E. G. Paterson, G. W. Burgreen, P. Hariharan, M. Giarra, V. Reddy, S. W. Day, K. B. Manning, S. Deutsch, M. R. Berman, M. R. Myers, and R. A. Malinauskas. Assessment of CFD performance in simulations of an idealized medical device: results of FDA’s first computational interlaboratory study. Cardiovasc. Eng. Technol. 3:139–160, 2012.

    Article  Google Scholar 

  35. Stewart, S. F. C., R. A. Robinson, R. A. Nelson, and R. A. Malinauskas. Effects of thrombosed vena cava filters on blood flow: flow visualization and numerical modeling. Ann. Biomed. Eng. 36:1764–1781, 2008.

    Article  Google Scholar 

  36. Walenga, R., C. Butler, B. Craven, P. Longest, R. Mohamed, B. Newman, B. Olsson, G. Hochhaus, B. Li, M. Luke, L. Zhao, A. Przekwas, and R. Lionberger. Mechanistic Modeling of Generic Orally Inhaled Drug Products (OIDPs): A Workshop Summary Report. Clinical Pharmacology & Therapeutics: Pharmacometrics & Systems Pharmacology (in press), 2022.

Download references

Acknowledgments

We thank Dr. Steven Day of the Rochester Institute of Technology who helped to design and fabricate the blood pump model in collaboration with RAM, and Dr. Sandy Stewart of the FDA for administering the interlaboratory CFD study. We thank Dr. Kenneth Aycock for reviewing the manuscript and for providing helpful comments and suggestions. This project was funded by the FDA CDRH Critical Path program and, in part, by a National Science Foundation INTERN supplement through NSF CMMI-2017805.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent A. Craven.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponnaluri, S.V., Hariharan, P., Herbertson, L.H. et al. Results of the Interlaboratory Computational Fluid Dynamics Study of the FDA Benchmark Blood Pump. Ann Biomed Eng 51, 253–269 (2023). https://doi.org/10.1007/s10439-022-03105-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03105-w

Keywords

Navigation