Skip to main content

Advertisement

Log in

Detection and Spatiotemporal Analysis of In-vitro 3D Migratory Triple-Negative Breast Cancer Cells

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The invasion of cancer cells into the surrounding tissues is one of the hallmarks of cancer. However, a precise quantitative understanding of the spatiotemporal patterns of cancer cell migration and invasion still remains elusive. A promising approach to investigate these patterns are 3D cell cultures, which provide more realistic models of cancer growth compared to conventional 2D monolayers. Quantifying the spatial distribution of cells in these 3D cultures yields great promise for understanding the spatiotemporal progression of cancer. In the present study, we present an image processing and segmentation pipeline for the detection of 3D GFP-fluorescent triple-negative breast cancer cell nuclei, and we perform quantitative analysis of the formed spatial patterns and their temporal evolution. The performance of the proposed pipeline was evaluated using experimental 3D cell culture data, and was found to be comparable to manual segmentation, outperforming four alternative automated methods. The spatiotemporal statistical analysis of the detected distributions of nuclei revealed transient, non-random spatial distributions that consisted of clustered patterns across a wide range of neighbourhood distances, as well as dispersion for larger distances. Overall, the implementation of the proposed framework revealed the spatial organization of cellular nuclei with improved accuracy, providing insights into the 3 dimensional inter-cellular organization and its progression through time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Baddeley, A. J., R. Turner, et al. Spatstat: an R package for analyzing spatial point patterns. J. Stat. Softw. 12:1–42, 2005.

    Article  Google Scholar 

  2. Baddeley, A. J., R. A. Moyeed, C. V. Howard, and A. Boyde. Analysis of a three-dimensional point pattern with replication. J. R. Stat. Soc. 42:641–668, 1993.

    Google Scholar 

  3. Biot, E., E. Crowell, H. Hofte, Y. Maurin, S. Vernhettes, and P. Andrey. A new filter for spot extraction in N-dimensional biological imaging. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 975–978, IEEE, 2008.

  4. Botev, Z. I., J. F. Grotowski, D. P. Kroese, et al. Kernel density estimation via diffusion. Ann. Stat. 38:2916–2957, 2010.

    Article  Google Scholar 

  5. Bradley, D., and G. Roth. Adaptive thresholding using the integral image. J. Graph. Tools. 12:13–21, 2007.

    Article  Google Scholar 

  6. Bull, J. A., P. S. Macklin, T. Quaiser, F. Braun, S. L. Waters, C. W. Pugh, and H. M. Byrne. Combining multiple spatial statistics enhances the description of immune cell localisation within tumours. Sci. Rep. 10:18624, 2020.

    Article  CAS  Google Scholar 

  7. Carpenter, A. E., T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman, D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, P. Golland, and D. M. Sabatini. Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7:R100, 2006.

    Article  Google Scholar 

  8. de Back, W., T. Zerjatke, and I. Roeder. Statistical and mathematical modeling of spatiotemporal dynamics of stem cells. New York: Springer, pp. 219–243, 2019.

    Google Scholar 

  9. Dixon, P. M. Ripley’s K function. Wiley StatsRef. 3:1796–1803, 2014.

    Google Scholar 

  10. Fatima, M. M., and V. Seenivasagam. A marker controlled watershed algorithm with priori shape information for segmentation of clustered nuclei. Int. J. Adv. Res. Comput. Sci. 2:1–6, 2011.

    Google Scholar 

  11. Friedl, P., J. Locker, E. Sahai, and J. E. Segall. Classifying collective cancer cell invasion. Nat. Cell Biol. 14:777–783, 2012.

    Article  Google Scholar 

  12. Han, J., M. Kamber, and J. Pei. 2—Getting to know your data. In: The Morgan Kaufmann series in data management systems, edited by J. Han, M. Kamber, and J. B. T. D. M. T. E. Pei. Boston: Morgan Kaufmann, 2012, pp. 39–82.

    Google Scholar 

  13. Heindl, A., S. Nawaz, and Y. Yuan. Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology. Lab. Investig. 95:377–384, 2015.

    Article  Google Scholar 

  14. Hickman, J. A., R. Graeser, R. de Hoogt, S. Vidic, C. Brito, M. Gutekunst, and H. van der Kuip. Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol. J. 9:1115–1128, 2014.

    Article  CAS  Google Scholar 

  15. Li, C., C. Xu, C. Gui, and M. D. Fox. Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19:3243–3254, 2010.

    Article  Google Scholar 

  16. Liu, H., T. Lu, G.-J. Kremers, A. L. B. Seynhaeve, and T. L. M. ten Hagen. A microcarrier-based spheroid 3D invasion assay to monitor dynamic cell movement in extracellular matrix. Biol. Proc. Online. 22:3, 2020.

    Article  Google Scholar 

  17. Luisier, F., C. Vonesch, T. Blu, and M. Unser. Fast interscale wavelet denoising of Poisson-corrupted images. Signal Process. 90:415–427, 2010.

    Article  Google Scholar 

  18. MATLAB. 9.7.0.1190202 (R2019b), Natick, Massachusetts: The MathWorks Inc, 2018.

  19. Mohammed, J. G. and T. Boudier. Classified region growing for 3D segmentation of packed nuclei. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 842–845. 2014

  20. Nasser, L., and T. Boudier. A novel generic dictionary-based denoising method for improving noisy and densely packed nuclei segmentation in 3D time-lapse fluorescence microscopy images. Sci. Rep. 9:5654, 2019.

    Article  Google Scholar 

  21. Ostertagova, E., O. Ostertag, and J. Kováč. Methodology and Application of the Kruskal–Wallis Test. Geneva: Trans Tech Publ, pp. 115–120, 2014.

    Google Scholar 

  22. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9:62–66, 1979.

    Article  Google Scholar 

  23. Prados-Suárez, B., J. Chamorro-Martínez, D. Sánchez, and J. Abad. Region-based fit of color homogeneity measures for fuzzy image segmentation. Fuzzy Sets Syst. 158:215–229, 2007.

    Article  Google Scholar 

  24. R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org

  25. Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9:676, 2012.

    Article  CAS  Google Scholar 

  26. Schmitt, O., and M. Hasse. Morphological multiscale decomposition of connected regions with emphasis on cell clusters. Comput. Vis. Image Underst. 113:188–201, 2009.

    Article  Google Scholar 

  27. Sternberg, S. R. Biomedical image processing. Computer. 16:22–34, 1983.

    Article  Google Scholar 

  28. Stringer, C., T. Wang, M. Michaelos, and M. Pachitariu. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods. 18:100–106, 2021.

    Article  CAS  Google Scholar 

  29. Vincent, L., and P. Soille. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13:583–598, 1991.

    Article  Google Scholar 

  30. Wählby, C., I.-M. Sintorn, F. Erlandsson, G. Borgefors, and E. Bengtsson. Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J. Microsc. 215:67–76, 2004.

    Article  Google Scholar 

  31. Wienert, S., D. Heim, K. Saeger, A. Stenzinger, M. Beil, P. Hufnagl, M. Dietel, C. Denkert, and F. Klauschen. Detection and segmentation of cell nuclei in virtual microscopy images: a minimum-model approach. Sci. Rep. 2:503, 2012.

    Article  Google Scholar 

  32. Ziou, D., and S. Tabbone. Edge detection techniques—an overview. Pattern Recognit. Image Anal. 8:537–559, 2000.

    Google Scholar 

Download references

Acknowledgments

N. M. D. thanks Stavros Niarchos Foundation (F237055R00), Werner Graupe (F202955R00) and McGill University (90025) for the scholarships. S. F. T. thanks McGill University for the McGill Engineering Doctoral Award (90025) and the FRQNT (291010) for the scholarships. This work was supported by Cyprus Research and Innovation Foundation (Project: INTERNATIONAL/OTHER/0118/0018), Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN-2019-06638 (G. D. M.).

Data Availability

Raw data https://figshare.com/projects/3D-GROWTH-MDA-MB-231-SERIES-12/118989, Code for Image processing https://github.com/NMDimitriou/3D-Preprocessing-Nuclei-Segmentation.git, and Spatial analysis https://github.com/NMDimitriou/3D-spatial-analysis-cell-nuclei.git.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos M. Dimitriou.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary File1 (PDF 6624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitriou, N.M., Flores-Torres, S., Kinsella, J.M. et al. Detection and Spatiotemporal Analysis of In-vitro 3D Migratory Triple-Negative Breast Cancer Cells. Ann Biomed Eng 51, 318–328 (2023). https://doi.org/10.1007/s10439-022-03022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03022-y

Keywords

Navigation