Skip to main content

Advertisement

Log in

Discrimination between human epidermal growth factor receptor 2 (HER2)-low-expressing and HER2-overexpressing breast cancers: a comparative study of four MRI diffusion models

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To determine the value of conventional DWI, continuous-time random walk (CTRW), fractional order calculus (FROC), and stretched exponential model (SEM) in discriminating human epidermal growth factor receptor 2 (HER2) status of breast cancer (BC).

Methods

This prospective study included 158 women who underwent DWI, CTRW, FROC, and SEM and were pathologically categorized into the HER2-zero-expressing group (n = 10), HER2-low-expressing group (n = 86), and HER2-overexpressing group (n = 62). Nine diffusion parameters, namely ADC, αCTRW, βCTRW, DCTRW, βFROC, DFROC, μFROC, αSEM, and DDCSEM of the primary tumor, were derived from four diffusion models. These diffusion metrics and clinicopathologic features were compared between groups. Logistic regression was used to determine the optimal diffusion metrics and clinicopathologic variables for classifying the HER2-expressing statuses. Receiver operating characteristic (ROC) curves were used to evaluate their discriminative ability.

Results

The estrogen receptor (ER) status, progesterone receptor (PR) status, and tumor size differed between HER2-low-expressing and HER2-overexpressing groups (p < 0.001 to p = 0.009). The αCTRW, DCTRW, βFROC, DFROC, μFROC, αSEM, and DDCSEM were significantly lower in HER2-low-expressing BCs than those in HER2-overexpressing BCs (p < 0.001 to p = 0.01). Further multivariable logistic regression analysis showed that the αCTRW was the single best discriminative metric, with an area under the curve (AUC) being higher than that of ADC (0.802 vs. 0.610, p < 0.05); the addition of ER status, PR status, and tumor size to the αCTRW improved the AUC to 0.877.

Conclusions

The αCTRW could help discriminate the HER2-low-expressing and HER2-overexpressing BCs.

Clinical relevance statement

Human epidermal growth factor receptor 2 (HER2)-low-expressing breast cancer (BC) might also benefit from the HER2-targeted therapy. Prediction of HER2-low-expressing BC or HER2-overexpressing BC is crucial for appropriate management. Advanced continuous-time random walk diffusion MRI offers a solution to this clinical issue.

Key Points

• Human epidermal receptor 2 (HER2)-low-expressing BC had lower αCTRW, DCTRW, βFROC, DFROC, μFROC, αSEM, and DDCSEM values compared with HER2-overexpressing breast cancer.

• The αCTRW was the single best diffusion metric (AUC = 0.802) for discrimination between the HER2-low-expressing and HER2-overexpressing breast cancers.

• The addition of αCTRW to the clinicopathologic features (estrogen receptor status, progesterone receptor status, and tumor size) further improved the discriminative ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

AUC:

Area under the curve

BC:

Breast cancer

CI:

Confidence interval

CTRW:

Continuous-time random walk

DCE:

Dynamic contrast-enhanced

DTI:

Diffusion tensor imaging

DWI:

Diffusion-weighted imaging

ER:

Estrogen receptor

FISH:

Fluorescence in situ hybridization

FOV:

Field of view

FROC:

Fractional order calculus

HER2:

Human epidermal growth factor receptor 2

ICC:

Inter-class correlation coefficient

IHC:

Immunohistochemistry

MRI:

Magnetic resonance imaging

PR:

Progesterone receptor

QIBA:

Quantitative Imaging Biomarkers Alliance

ROC:

Receiver operating characteristic

ROI:

Region of interest

SE-EPI:

Spin-echo echo-planar imaging

SEM:

Stretched exponential model

T1WI:

T1-weighted imaging

T2WI:

T2-weighted imaging

TE:

Echo time

TR:

Repetition time

VOI:

Volume of interest

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Harbeck N, Penault-Llorca F, Cortes J et al (2019) Breast cancer. Nat Rev Dis Primers 5:66. https://doi.org/10.1038/s41572-019-0111-2

    Article  PubMed  Google Scholar 

  3. Horvat JV, Bernard-Davila B, Helbich TH et al (2019) Diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer. J Magn Reson Imaging 50:836–846. https://doi.org/10.1002/jmri.26697

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gingras I, Gebhart G, de Azambuja E, Piccart-Gebhart M (2017) HER2-positive breast cancer is lost in translation: time for patient-centered research. Nat Rev Clin Oncol 14:669–681. https://doi.org/10.1038/nrclinonc.2017.96

    Article  PubMed  Google Scholar 

  5. Modi S, Saura C, Yamashita T et al (2020) Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med 382:610–621. https://doi.org/10.1056/NEJMoa1914510

    Article  CAS  PubMed  Google Scholar 

  6. Wolff AC, Hammond ME, Hicks DG et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31:3997–4013. https://doi.org/10.1200/JCO.2013.50.9984

    Article  PubMed  Google Scholar 

  7. Tarantino P, Hamilton E, Tolaney SM et al (2020) HER2-low breast cancer: pathological and clinical landscape. J Clin Oncol 38:1951–1962. https://doi.org/10.1200/JCO.19.02488

    Article  CAS  PubMed  Google Scholar 

  8. Denkert C, Seither F, Schneeweiss A et al (2021) Clinical and molecular characteristics of HER2-low-positive breast cancer: pooled analysis of individual patient data from four prospective, neoadjuvant clinical trials. Lancet Oncol 22:1151–1161. https://doi.org/10.1016/S1470-2045(21)00301-6

    Article  CAS  PubMed  Google Scholar 

  9. Modi S, Park H, Murthy RK et al (2020) Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase Ib study. J Clin Oncol 38:1887–1896. https://doi.org/10.1200/JCO.19.02318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eiger D, Agostinetto E, Saúde-Conde R, de Azambuja E (2021) The exciting new field of HER2-low breast cancer treatment. Cancers (Basel) 13:1015. https://doi.org/10.3390/cancers13051015

    Article  CAS  PubMed  Google Scholar 

  11. Modi S, Jacot W, Yamashita T et al (2022) Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med 387:9–20. https://doi.org/10.1056/NEJMoa2203690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jordan NV, Bardia A, Wittner BS et al (2016) HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537:102–106. https://doi.org/10.1038/nature19328

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Onaygil C, Kaya H, Ugurlu MU, Aribal E (2017) Diagnostic performance of diffusion tensor imaging parameters in breast cancer and correlation with the prognostic factors. J Magn Reson Imaging 45:660–672. https://doi.org/10.1002/jmri.25481

    Article  PubMed  Google Scholar 

  14. Meng N, Wang X, Sun J et al (2021) A comparative study of the value of amide proton transfer-weighted imaging and diffusion kurtosis imaging in the diagnosis and evaluation of breast cancer. Eur Radiol 31:1707–1717. https://doi.org/10.1007/s00330-020-07169-x

    Article  CAS  PubMed  Google Scholar 

  15. Andreassen MMS, Rodríguez-Soto AE, Conlin CC et al (2021) Discrimination of breast cancer from healthy breast tissue using a three-component diffusion-weighted MRI model. Clin Cancer Res 27:1094–1104. https://doi.org/10.1158/1078-0432.CCR-20-2017

    Article  PubMed  Google Scholar 

  16. Vidić I, Egnell L, Jerome NP et al (2018) Support vector machine for breast cancer classification using diffusion-weighted MRI histogram features: preliminary study. J Magn Reson Imaging 47:1205–1216. https://doi.org/10.1002/jmri.25873

    Article  PubMed  Google Scholar 

  17. Mao C, Jiang W, Huang J et al (2022) Quantitative parameters of diffusion spectrum imaging: HER2 status prediction in patients with breast cancer. Front Oncol 12:817070. https://doi.org/10.3389/fonc.2022.817070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao A, Zhang H, Yan X et al (2022) Whole-tumor histogram analysis of multiple diffusion metrics for glioma genotyping. Radiology 302:652–661. https://doi.org/10.1148/radiol.210820

    Article  PubMed  Google Scholar 

  19. Mao J, Zeng W, Zhang Q et al (2020) Differentiation between high-grade gliomas and solitary brain metastases: a comparison of five diffusion-weighted MRI models. BMC Med Imaging 20:124. https://doi.org/10.1186/s12880-020-00524-w

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vidić I, Egnell L, Jerome NP et al (2020) Modeling the diffusion-weighted imaging signal for breast lesions in the b = 200 to 3000 s/mm2 range: quality of fit and classification accuracy for different representations. Magn Reson Med 84:1011–1023. https://doi.org/10.1002/mrm.28161

    Article  PubMed  Google Scholar 

  21. You C, Li J, Zhi W et al (2019) The volumetric-tumour histogram-based analysis of intravoxel incoherent motion and non-Gaussian diffusion MRI: association with prognostic factors in HER2-positive breast cancer. J Transl Med 17:182. https://doi.org/10.1186/s12967-019-1911-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karaman MM, Zhang J, Xie KL, Zhu W, Zhou XJ (2021) Quartile histogram assessment of glioma malignancy using high b-value diffusion MRI with a continuous-time random-walk model. NMR Biomed 34:e4485. https://doi.org/10.1002/nbm.4485

    Article  CAS  PubMed  Google Scholar 

  23. Zhong Z, Merkitch D, Karaman MM et al (2019) High-spatial-resolution diffusion MRI in Parkinson disease: lateral asymmetry of the substantia nigra. Radiology 291:149–157. https://doi.org/10.1148/radiol.2019181042

    Article  PubMed  Google Scholar 

  24. Sui Y, Wang H, Liu G et al (2015) Differentiation of low- and high-grade pediatric brain tumors with high b-value diffusion-weighted MR imaging and a fractional order calculus model. Radiology 277:489–496. https://doi.org/10.1148/radiol.2015142156

    Article  PubMed  Google Scholar 

  25. Bai Y, Lin Y, Tian J et al (2016) Grading of gliomas by using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imaging. Radiology 278:496–504. https://doi.org/10.1148/radiol.2015142173

    Article  PubMed  Google Scholar 

  26. Bickelhaupt S, Steudle F, Paech D et al (2017) On a fractional order calculus model in diffusion weighted breast imaging to differentiate between malignant and benign breast lesions detected on X-ray screening mammography. PLoS One 12:e0176077. https://doi.org/10.1371/journal.pone.0176077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suo S, Yin Y, Geng X et al (2021) Diffusion-weighted MRI for predicting pathologic response to neoadjuvant chemotherapy in breast cancer: evaluation with mono-, bi-, and stretched-exponential models. J Transl Med 19:236. https://doi.org/10.1186/s12967-021-02886-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Suo S, Cheng F, Cao M et al (2017) Multiparametric diffusion-weighted imaging in breast lesions: association with pathologic diagnosis and prognostic factors. J Magn Reson Imaging 46:740–750. https://doi.org/10.1002/jmri.25612

    Article  PubMed  Google Scholar 

  29. Jin YN, Zhang Y, Cheng JL, Zheng DD, Hu Y (2019) Monoexponential, Biexponential, and stretched-exponential models using diffusion-weighted imaging: a quantitative differentiation of breast lesions at 3.0T. J Magn Reson Imaging 50:1461–1467. https://doi.org/10.1002/jmri.26729

    Article  PubMed  Google Scholar 

  30. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505. https://doi.org/10.1148/radiology.168.2.3393671

    Article  PubMed  Google Scholar 

  31. Rahbar H, Partridge SC, Demartini WB et al (2012) In vivo assessment of ductal carcinoma in situ grade: a model incorporating dynamic contrast-enhanced and diffusion-weighted breast MR imaging parameters. Radiology 263:374–382. https://doi.org/10.1148/radiol.12111368

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hammond ME, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28:2784–2795. https://doi.org/10.1200/JCO.2009.25.6529

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dowsett M, Nielsen TO, A’Hern J et al (2011) Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst 103:1656–1664. https://doi.org/10.1093/jnci/djr393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fehrenbacher L, Cecchini RS, Geyer CE Jr et al (2020) NSABP B-47/NRG oncology phase III randomized trial comparing adjuvant chemotherapy with or without trastuzumab in high-risk invasive breast cancer negative for HER2 by FISH and with IHC 1+ or 2. J Clin Oncol 38:444–453. https://doi.org/10.1200/JCO.19.01455

    Article  CAS  PubMed  Google Scholar 

  35. Yuen S, Monzawa S, Yanai S et al (2020) The association between MRI findings and breast cancer subtypes: focused on the combination patterns on diffusion-weighted and T2-weighted images. Breast Cancer 27:1029–1037. https://doi.org/10.1007/s12282-020-01105-z

    Article  PubMed  Google Scholar 

  36. Jiang Z, Song L, Lu H, Yin J (2019) The potential use of DCE-MRI texture analysis to predict HER2 2+ status. Front Oncol 9:242. https://doi.org/10.3389/fonc.2019.00242

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tang L, Zhou XJ (2019) Diffusion MRI of cancer: from low to high b-values. J Magn Reson Imaging 49:23–40. https://doi.org/10.1002/jmri.26293

    Article  PubMed  Google Scholar 

  38. Du S, Gao S, Zhang L, Yang X, Qi X, Li S (2021) Improved discrimination of molecular subtypes in invasive breast cancer: comparison of multiple quantitative parameters from breast MRI. Magn Reson Imaging 77:148–158. https://doi.org/10.1016/j.mri.2020.12.001

    Article  CAS  PubMed  Google Scholar 

  39. Roknsharifi S, Fishman MDC, Agarwal MD, Brook A, Kharbanda V, Dialani V (2019) The role of diffusion weighted imaging as supplement to dynamic contrast enhanced breast MRI: can it help predict malignancy, histologic grade and recurrence? Acad Radiol 26:923–929. https://doi.org/10.1016/j.acra.2018.09.003

    Article  PubMed  Google Scholar 

  40. Park SH, Choi HY, Hahn SY (2015) Correlations between apparent diffusion coefficient values of invasive ductal carcinoma and pathologic factors on diffusion-weighted MRI at 3.0 Tesla. J Magn Reson Imaging 41:175–182. https://doi.org/10.1002/jmri.24519

    Article  CAS  PubMed  Google Scholar 

  41. Kim JJ, Kim JY, Suh HB et al (2022) Characterization of breast cancer subtypes based on quantitative assessment of intratumoral heterogeneity using dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Eur Radiol 32:822–833. https://doi.org/10.1007/s00330-021-08166-4

    Article  PubMed  Google Scholar 

  42. Shukla-Dave A, Obuchowski NA, Chenevert TL et al (2019) Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging 49:e101–e121. https://doi.org/10.1002/jmri.26518

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (82102130, 12126610), Guangdong Basic and Applied Basic Research Foundation (2021A1515010385, 2023A1515011305), Guangzhou Basic and Applied Basic Research Foundation (2023A04J2112), and SKY Imaging Research Fund Project of China International Medical Foundation (Z-2014-07-1912-21).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Zhang or Jun Shen.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Jun Shen.

Conflict of interest

Two of the authors (Mengzhu Wang and Xu Yan) are employees of Siemens Healthcare.

The other authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

All participants provided written informed consent.

Ethical approval

Institutional Review Board approval was obtained from the Institutional Review Board of Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University (Guangzhou, China) (SYSEC-KY-KS-2022-027).

Study subjects or cohorts overlap

No study subject or cohort has been previously reported in this study.

Methodology

• prospective

• diagnostic study

• single-center study

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, C., Hu, L., Jiang, W. et al. Discrimination between human epidermal growth factor receptor 2 (HER2)-low-expressing and HER2-overexpressing breast cancers: a comparative study of four MRI diffusion models. Eur Radiol 34, 2546–2559 (2024). https://doi.org/10.1007/s00330-023-10198-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-023-10198-x

Keywords

Navigation