Skip to main content
Log in

Emerging Concepts and Tools in Cell Mechanomemory

  • S.I. : Biomaterials - Engineering Cell Behavior
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Studying a cell’s ability to sense and respond to mechanical cues has emerged as a field unto itself over the last several decades, and this research area is now populated by engineers and biologists alike. As just one example of this cell mechanosensing, fibroblasts on soft substrates have slower growth rates, smaller spread areas, lower traction forces, and slower migration speeds compared to cells on stiff substrates. This phenomenon is not unique to fibroblasts, as these behaviors, and others, on soft substrates has been shown across a variety of cell types, and reproduced in many different labs. Thus far, the field has focused on discerning the mechanisms of cell mechanosensing through ion channels, focal adhesions and integrin-binding sites to the ECM, and the cell cytoskeleton. A relatively new concept in the field is that of mechanical memory, which refers to persistent effects of mechanical stimuli long after they have been removed from said stimulus. Here, we review this literature, provide an overview of emerging substrate fabrication approaches likely to be helpful for the field, and suggest the adaption of genetic tools for studying mechanical memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Acerbi, I., et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. (Camb.) 7:1120–1134, 2015. https://doi.org/10.1039/c5ib00040h.

    Article  CAS  Google Scholar 

  2. Alemany, A., M. Florescu, C. S. Baron, J. Peterson-Maduro, and A. van Oudenaarden. Whole-organism clone tracing using single-cell sequencing. Nature 556:108–112, 2018. https://doi.org/10.1038/nature25969.

    Article  CAS  PubMed  Google Scholar 

  3. Al’Khafaji, A. M., D. Deatherage, and A. Brock. Control of lineage-specific gene expression by functionalized gRNA barcodes. ACS Synth. Biol. 7:2468–2474, 2018. https://doi.org/10.1021/acssynbio.8b00105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Balaban, N. Q., et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell. Biol. 3:466–472, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Balestrini, J. L., S. Chaudhry, V. Sarrazy, A. Koehler, and B. Hinz. The mechanical memory of lung myofibroblasts. Integr. Biol. (Camb.) 4:410–421, 2012. https://doi.org/10.1039/c2ib00149g.

    Article  CAS  Google Scholar 

  6. Bhang, H. E., et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med. 21:440–448, 2015. https://doi.org/10.1038/nm.3841.

    Article  CAS  PubMed  Google Scholar 

  7. Biddy, B. A., et al. Single-cell mapping of lineage and identity in direct reprogramming. Nature 564:219–224, 2018. https://doi.org/10.1038/s41586-018-0744-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blundell, J. R., and S. F. Levy. Beyond genome sequencing: lineage tracking with barcodes to study the dynamics of evolution, infection, and cancer. Genomics 104:417–430, 2014. https://doi.org/10.1016/j.ygeno.2014.09.005.

    Article  CAS  PubMed  Google Scholar 

  9. Bokoch, G. M., B. P. Bohl, and T. H. Chuang. Guanine nucleotide exchange regulates membrane translocation of Rac/Rho GTP-binding proteins. J. Biol. Chem. 269:31674–31679, 1994.

    CAS  PubMed  Google Scholar 

  10. Brady, S. W., et al. Combating subclonal evolution of resistant cancer phenotypes. Nat. Commun. 8:1231, 2017. https://doi.org/10.1038/s41467-017-01174-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brangwynne, C. P., et al. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell. Biol. 173:733–741, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bretscher, M. S. On the shape of migrating cells—a ‘front-to-back’ model. J. Cell Sci. 121:2625–2628, 2008. https://doi.org/10.1242/jcs.031120.

    Article  CAS  PubMed  Google Scholar 

  13. Buenrostro, J. D., et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:486–490, 2015. https://doi.org/10.1038/nature14590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chan, W. L., J. Silberstein, and C. M. Hai. Mechanical strain memory in airway smooth muscle. Am. J. Physiol. Cell. Physiol. 278:C895–C904, 2000. https://doi.org/10.1152/ajpcell.2000.278.5.C895.

    Article  CAS  PubMed  Google Scholar 

  15. Chang, C. C., et al. Regulation of metastatic ability and drug resistance in pulmonary adenocarcinoma by matrix rigidity via activating c-Met and EGFR. Biomaterials 60:141–150, 2015. https://doi.org/10.1016/j.biomaterials.2015.04.058.

    Article  CAS  PubMed  Google Scholar 

  16. Chaudhuri, O., et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15:326–334, 2016. https://doi.org/10.1038/nmat4489.

    Article  CAS  PubMed  Google Scholar 

  17. Cox, T. R., and J. T. Erler. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Model. Mech. 4:165–178, 2011. https://doi.org/10.1242/dmm.004077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. del Rio, A., et al. Stretching single talin rod molecules activates vinculin binding. Science 323:638–641, 2009. https://doi.org/10.1126/science.1162912.

    Article  CAS  PubMed  Google Scholar 

  19. Deroanne, C. F., C. M. Lapiere, and B. V. Nusgens. In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc. Res. 49:647–658, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Discher, D. E., P. Janmey, and Y.-L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. Duda, D. G., et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc. Natl. Acad. Sci. USA 107:21677–21682, 2010. https://doi.org/10.1073/pnas.1016234107.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dupont, S., et al. Role of YAP/TAZ in mechanotransduction. Nature 474:179–183, 2011. https://doi.org/10.1038/nature10137.

    Article  CAS  PubMed  Google Scholar 

  23. Engler, A., et al. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:617–628, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fenner, J., et al. Macroscopic stiffness of breast tumors predicts metastasis. Sci. Rep. 4:5512, 2014. https://doi.org/10.1038/srep05512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gencoglu, M. F., et al. Comparative study of multicellular tumor spheroid formation methods and implications for drug screening. ACS Biomater. Sci. Eng. 4:410–420, 2018. https://doi.org/10.1021/acsbiomaterials.7b00069.

    Article  CAS  PubMed  Google Scholar 

  26. Giancotti, F. G., and E. Ruoslahti. Integrin signaling. Science 285:1028–1032, 1999.

    Article  CAS  PubMed  Google Scholar 

  27. Giresi, P. G., J. Kim, R. M. McDaniell, V. R. Iyer, and J. D. Lieb. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 17:877–885, 2007. https://doi.org/10.1101/gr.5533506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Halliday, N. L., and J. J. Tomasek. Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in vitro. Exp. Cell. Res. 217:109–117, 1995.

    Article  CAS  PubMed  Google Scholar 

  29. Herrick, W. G., et al. PEG-phosphorylcholine hydrogels as tunable and versatile platforms for mechanobiology. Biomacromolecules 14:2294–2304, 2013. https://doi.org/10.1021/bm400418g.

    Article  CAS  PubMed  Google Scholar 

  30. Hirata, E., et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell 27:574–588, 2015. https://doi.org/10.1016/j.ccell.2015.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Holle, A. W., et al. In situ mechanotransduction via vinculin regulates stem cell differentiation. Stem Cells 31:2467–2477, 2013. https://doi.org/10.1002/stem.1490.

    Article  CAS  PubMed  Google Scholar 

  32. Huwart, L., et al. Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed. 19:173–179, 2006. https://doi.org/10.1002/nbm.1030.

    Article  PubMed  Google Scholar 

  33. Huwart, L., et al. MR elastography of liver fibrosis: preliminary results comparing spin-echo and echo-planar imaging. Eur. Radiol. 18:2535–2541, 2008. https://doi.org/10.1007/s00330-008-1051-5.

    Article  PubMed  Google Scholar 

  34. Hwang, J. H., et al. Extracellular matrix stiffness regulates osteogenic differentiation through MAPK activation. PLoS ONE 10:e0135519, 2015. https://doi.org/10.1371/journal.pone.0135519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687, 2002.

    Article  CAS  PubMed  Google Scholar 

  36. Ishihara, K., et al. Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 39:323–330, 1998.

    Article  CAS  PubMed  Google Scholar 

  37. Iwanicki, M. P., et al. Ovarian cancer spheroids use myosin-generated force to clear the mesothelium. Cancer Discov. 1:144–157, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Iwasaki, Y., and K. Ishihara. Phosphorylcholine-containing polymers for biomedical applications. Anal. Bioanal. Chem. 381:534–546, 2005. https://doi.org/10.1007/S00216-004-2805-9.

    Article  CAS  PubMed  Google Scholar 

  39. Jansen, L., T. Mccarthy, M. Lee, and S. Peyton. A synthetic, three-dimensional bone marrow hydrogel. BioRxiv 2018. https://doi.org/10.1101/275842.

    Article  Google Scholar 

  40. Katira, P., R. T. Bonnecaze, and M. H. Zaman. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties. Front. Oncol. 3:145, 2013. https://doi.org/10.3389/fonc.2013.00145.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kebschull, J. M., and A. M. Zador. Cellular barcoding: lineage tracing, screening and beyond. Nat. Methods 15:871–879, 2018. https://doi.org/10.1038/s41592-018-0185-x.

    Article  CAS  PubMed  Google Scholar 

  42. Khatiwala, C. B., P. D. Kim, S. R. Peyton, and A. J. Putnam. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J. Bone Miner. Res. 24:886–898, 2009. https://doi.org/10.1359/jbmr.081240.

    Article  CAS  PubMed  Google Scholar 

  43. Khatiwala, C. B., S. R. Peyton, M. Metzke, and A. J. Putnam. The regulation of osteogenesis by ECM rigidity in MC3T3-E1 cells requires MAPK activation. J. Cell. Physiol. 211:661–672, 2007. https://doi.org/10.1002/jcp.20974.

    Article  CAS  PubMed  Google Scholar 

  44. Killaars, A. R., et al. Extended exposure to stiff microenvironments leads to persistent chromatin remodeling in human mesenchymal stem cells. Adv. Sci. 6:1801483, 2019. https://doi.org/10.1002/advs.201801483.

    Article  CAS  Google Scholar 

  45. Kim, H. D., and S. R. Peyton. Bio-inspired materials for parsing matrix physicochemical control of cell migration: a review. Integr. Biol. (Camb.) 4:37–52, 2012. https://doi.org/10.1039/c1ib00069a.

    Article  CAS  Google Scholar 

  46. Kim, B. S., A. J. Putnam, T. J. Kulik, and D. J. Mooney. Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices. Biotechnol. Bioeng. 57:46–54, 1998.

    Article  CAS  PubMed  Google Scholar 

  47. Kiritoshi, Y., and K. Ishihara. Preparation of cross-linked biocompatible poly(2-methacryloyloxyethyl phosphorylcholine) gel and its strange swelling behavior in water/ethanol mixture. J. Biomater. Sci. Polym. Ed. 13:213–224, 2002.

    Article  CAS  PubMed  Google Scholar 

  48. Kolahi, K. S., and M. R. Mofrad. Mechanotransduction: a major regulator of homeostasis and development. Wiley Interdiscip. Rev. Syst. Biol. Med. 2:625–639, 2010. https://doi.org/10.1002/wsbm.79.

    Article  CAS  PubMed  Google Scholar 

  49. Kostic, A., C. D. Lynch, and M. P. Sheetz. Differential matrix rigidity response in breast cancer cell lines correlates with the tissue tropism. PLoS ONE 4:e6361, 2009. https://doi.org/10.1371/journal.pone.0006361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kumar, S., et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90:3762–3773, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lam, C. R., et al. A 3D biomimetic model of tissue stiffness interface for cancer drug testing. Mol. Pharm. 11:2016–2021, 2014. https://doi.org/10.1021/mp500059q.

    Article  CAS  PubMed  Google Scholar 

  52. Le, H. Q., et al. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat. Cell. Biol. 18:864–875, 2016. https://doi.org/10.1038/ncb3387.

    Article  CAS  PubMed  Google Scholar 

  53. Levental, K. R., et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906, 2009. https://doi.org/10.1016/j.cell.2009.10.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, C. X., et al. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat. Mater. 16:379–389, 2017. https://doi.org/10.1038/nmat4780.

    Article  CAS  PubMed  Google Scholar 

  55. Masters, K. S. Covalent growth factor immobilization strategies for tissue repair and regeneration. Macromol. Biosci. 11:1149–1163, 2011. https://doi.org/10.1002/mabi.201000505.

    Article  CAS  PubMed  Google Scholar 

  56. Matthews, B. D., D. R. Overby, R. Mannix, and D. E. Ingber. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell. Sci. 119:508–518, 2006.

    Article  CAS  PubMed  Google Scholar 

  57. McGrail, D. J., Q. M. Kieu, and M. R. Dawson. Metastatic ovarian cancer cell malignancy is increased on soft matrices through a mechanosensitive Rho/ROCK pathway. J. Cell. Sci. 127:2621–2626, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Metters, A. T., K. S. Anseth, and C. N. Bowman. Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer 41:3993–4004, 2000.

    Article  CAS  Google Scholar 

  59. Mierke, C. T., et al. Mechano-coupling and regulation of contractility by the vinculin tail domain. Biophys. J. 94:661–670, 2008. https://doi.org/10.1529/biophysj.107.108472.

    Article  CAS  PubMed  Google Scholar 

  60. Mih, J. D., et al. A multiwell platform for studying stiffness-dependent cell biology. PLoS ONE 6:e19929, 2011. https://doi.org/10.1371/journal.pone.0019929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nasrollahi, S., et al. Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory. Biomaterials 146:146–155, 2017. https://doi.org/10.1016/j.biomaterials.2017.09.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nguyen, T. V., M. Sleiman, T. Moriarty, W. G. Herrick, and S. R. Peyton. Sorafenib resistance and JNK signaling in carcinoma during extracellular matrix stiffening. Biomaterials 35:5749–5759, 2014. https://doi.org/10.1016/j.biomaterials.2014.03.058.

    Article  CAS  PubMed  Google Scholar 

  63. Paszek, M. J., and V. M. Weaver. The tension mounts: mechanics meets morphogenesis and malignancy. J. Mammary Gland Biol. Neoplasia 9:325–342, 2004.

    Article  PubMed  Google Scholar 

  64. Paszek, M. J., et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254, 2005.

    Article  CAS  PubMed  Google Scholar 

  65. Pelham, Jr, R. J., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94:13661–13665, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pelham, R. J., and Y. L. Wang. Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol. Bull. 194:348–349, 1998; (discussion 349–350).

    Article  CAS  PubMed  Google Scholar 

  67. Peyton, S. R., P. D. Kim, C. M. Ghajar, D. Seliktar, and A. J. Putnam. The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials 29:2597–2607, 2008. https://doi.org/10.1016/j.biomaterials.2008.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peyton, S. R., and A. J. Putnam. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204:198–209, 2005. https://doi.org/10.1002/jcp.20274.

    Article  CAS  PubMed  Google Scholar 

  69. Peyton, S. R., C. B. Raub, V. P. Keschrumrus, and A. J. Putnam. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 27:4881–4893, 2006. https://doi.org/10.1016/j.biomaterials.2006.05.012.

    Article  CAS  PubMed  Google Scholar 

  70. Peyton, S. R., et al. Marrow-derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnol. Bioeng. 108:1181–1193, 2011. https://doi.org/10.1002/bit.23027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Provenzano, P. P., et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4:38, 2006. https://doi.org/10.1186/1741-7015-4-38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Provenzano, P. P., et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6:11, 2008. https://doi.org/10.1186/1741-7015-6-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Raeber, G. P., M. P. Lutolf, and J. A. Hubbell. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys. J. 89:1374–1388, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Raj, B., J. A. Gagnon, and A. F. Schier. Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT. Nat. Protoc. 13:2685–2713, 2018. https://doi.org/10.1038/s41596-018-0058-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Raj, B., et al. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat. Biotechnol. 36:442–450, 2018. https://doi.org/10.1038/nbt.4103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Riveline, D., et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell. Biol. 153:1175–1186, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rodriguez-Fraticelli, A. E., et al. Clonal analysis of lineage fate in native haematopoiesis. Nature 553:212–216, 2018. https://doi.org/10.1038/nature25168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rowley, J. A., G. Madlambayan, and D. J. Mooney. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53, 1999.

    Article  CAS  PubMed  Google Scholar 

  79. Samuel, M. S., et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19:776–791, 2011. https://doi.org/10.1016/j.ccr.2011.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schwartz, A. D., C. L. Hall, L. E. Barney, C. C. Babbitt, and S. R. Peyton. Integrin alpha6 and EGFR signaling converge at mechanosensitive calpain 2. Biomaterials 178:73–82, 2018. https://doi.org/10.1016/j.biomaterials.2018.05.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schwartz, A. D., et al. A biomaterial screening approach reveals microenvironmental mechanisms of drug resistance. Integr. Biol. (Camb.) 9:912–924, 2017. https://doi.org/10.1039/c7ib00128b.

    Article  CAS  PubMed Central  Google Scholar 

  82. Seo, B. R., et al. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci. Trans. Med. 7(301):301ra130, 2015.

    Article  Google Scholar 

  83. Shen, Y. I., et al. Hyaluronic acid hydrogel stiffness and oxygen tension affect cancer cell fate and endothelial sprouting. Biomater. Sci. 2:655–665, 2014. https://doi.org/10.1039/C3BM60274E.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shimizu, T., T. Goda, N. Minoura, M. Takai, and K. Ishihara. Super-hydrophilic silicone hydrogels with interpenetrating poly(2-methacryloyloxyethyl phosphorylcholine) networks. Biomaterials 31:3274–3280, 2010. https://doi.org/10.1016/j.biomaterials.2010.01.026.

    Article  CAS  PubMed  Google Scholar 

  85. Stamenovic, D., and D. E. Ingber. Models of cytoskeletal mechanics of adherent cells. Biomech. Model Mechanobiol. 1:95–108, 2002.

    Article  CAS  PubMed  Google Scholar 

  86. Stowers, R. S., et al. Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility. Nat. Biomed. Eng. 2019. https://doi.org/10.1038/s41551-019-0420-5.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Swaminathan, V., et al. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 71:5075–5080, 2011. https://doi.org/10.1158/0008-5472.CAN-11-0247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Syed, S., J. Schober, A. Blanco, and S. P. Zustiak. Morphological adaptations in breast cancer cells as a function of prolonged passaging on compliant substrates. PLoS ONE 12:e0187853, 2017. https://doi.org/10.1371/journal.pone.0187853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tajik, A., et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 15:1287–1296, 2016. https://doi.org/10.1038/nmat4729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tilghman, R. W., et al. Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS ONE 5:e12905, 2010. https://doi.org/10.1371/journal.pone.0012905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tokuda, E. Y., C. E. Jones, and K. S. Anseth. PEG-peptide hydrogels reveal differential effects of matrix microenvironmental cues on melanoma drug sensitivity. Integr. Biol. (Camb.) 9:76–87, 2017. https://doi.org/10.1039/c6ib00229c.

    Article  CAS  PubMed Central  Google Scholar 

  92. Woodworth, M. B., K. M. Girskis, and C. A. Walsh. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat. Rev. Genet. 18:230–244, 2017. https://doi.org/10.1038/nrg.2016.159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wozniak, M. A., R. Desai, P. A. Solski, C. J. Der, and P. J. Keely. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J. Cell Biol. 163:583–595, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, J., R. B. Dickinson, and T. P. Lele. Investigation of in vivo microtubule and stress fiber mechanics with laser ablation. Integr. Biol. (Camb.) 4:471–479, 2012. https://doi.org/10.1039/c2ib20015e.

    Article  CAS  Google Scholar 

  95. Wylie, R. G., et al. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10:799–806, 2011. https://doi.org/10.1038/nmat3101.

    Article  CAS  PubMed  Google Scholar 

  96. Xu, Y., et al. The biological performance of cell-containing phospholipid polymer hydrogels in bulk and microscale form. Biomaterials 31:8839–8846, 2010. https://doi.org/10.1016/j.biomaterials.2010.07.106.

    Article  CAS  PubMed  Google Scholar 

  97. Yang, C., M. W. Tibbitt, L. Basta, and K. S. Anseth. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13:645–652, 2014. https://doi.org/10.1038/nmat3889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yao, M., et al. The mechanical response of talin. Nat. Commun. 7:11966, 2016. https://doi.org/10.1038/ncomms11966.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zenk, F., et al. Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science 357:212–216, 2017. https://doi.org/10.1126/science.aam5339.

    Article  CAS  PubMed  Google Scholar 

  100. Zustiak, S. P., and J. B. Leach. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules 11:1348–1357, 2010. https://doi.org/10.1021/bm100137q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zustiak, S., R. Nossal, and D. L. Sackett. Multiwell stiffness assay for the study of cell responsiveness to cytotoxic drugss. Biotechnol. Bioeng. 9999:1–8, 2013. https://doi.org/10.1002/bit.25097.

    Article  CAS  Google Scholar 

  102. Zustiak, S. P., et al. Three-dimensional matrix stiffness and adhesive ligands affect cancer cell response to toxins. Biotechnol. Bioeng. 113:443–452, 2016. https://doi.org/10.1002/bit.25709.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an NSF CAREER to SRP (DMR1454806), a Texas 4000 Research Grant to AB and NIH R01 EB014869 to TPL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelly R. Peyton.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lele, T.P., Brock, A. & Peyton, S.R. Emerging Concepts and Tools in Cell Mechanomemory. Ann Biomed Eng 48, 2103–2112 (2020). https://doi.org/10.1007/s10439-019-02412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02412-z

Keywords

Navigation