Skip to main content
Log in

The Effect of Downsizing on the Normal Tricuspid Annulus

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tricuspid annuloplasty is a surgical procedure that cinches the valve’s annulus in order to reduce regurgitant blood flow. One of its critical parameters is the degree of downsizing. To provide insight into the effect of downsizing, we studied the annulus of healthy sheep during suture annuloplasty. To this end, we implanted fiduciary markers along the annulus of sheep and subsequently performed a DeVega suture annuloplasty. We performed five downsizing steps in each animal while recording hemodynamic and sonomicrometry data in beating hearts. Subsequently, we used splines to approximate the annulus at baseline and at each downsizing step. Based on these approximations we computed clinical metrics of annular shape and dynamics, and the continuous field metrics height, strain, and curvature. With these data, we demonstrated that annular area reduction during downsizing was primarily driven by compression of the anterior annulus. Similarly, reduction in annular dynamics was driven by reduced contractility in the anterior annulus. Finally, changes in global height and eccentricity of the annulus could be explained by focal changes in the continuous height profile and changes in annular curvature. Our findings are important as they provide insight into a regularly performed surgical procedure and may inform the design of transcatheter devices that mimic suture annuloplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Anderson, R. H., S. Y. Ho, and A. E. Becker. Anatomy of the human atrioventricular junctions revisited. Anat. Rec. 260(1):81–91, 2000. https://doi.org/10.1002/1097-0185(20000901)260:1<81::AID-AR90>3.0.CO;2-3.

    Article  CAS  PubMed  Google Scholar 

  2. Basu, A., and Z. He. Annulus tension on the tricuspid valve: an in-vitro study. Cardiovasc. Eng. Technol. 7(3):270–279, 2016. https://doi.org/10.1007/s13239-016-0267-9.

    Article  PubMed  Google Scholar 

  3. Basu, A., C. Lacerda, and Z. He. Mechanical properties and composition of the basal leaflet-annulus region of the tricuspid valve. Cardiovasc. Eng. Technol. 9(2):217–225, 2018. https://doi.org/10.1007/s13239-018-0343-4.

    Article  PubMed  Google Scholar 

  4. Benedetto, U., G. Melina, E. Angeloni, S. Refice, A. Roscitano, C. Comito, and R. Sinatra. Prophylactic tricuspid annuloplasty in patients with dilated tricuspid annulus undergoing mitral valve surgery. J. Thorac. Cardiovasc. Surg. 143(3):632–638, 2012. https://doi.org/10.1016/j.jtcvs.2011.12.006.

    Article  PubMed  Google Scholar 

  5. Casa, L. D. C., J. R. Dolensky, E. M. Spinner, E. Veledar, S. Lerakis, and A. P. Yoganathan. Impact of pulmonary hypertension on tricuspid valve function. Ann. Biomed. Eng. 41(4):709–724, 2013. https://doi.org/10.1007/s10439-012-0713-2.

    Article  PubMed  Google Scholar 

  6. de Vega Sanromán, N. G. La anuloplastia selectiva, regulable y permanente. Una técnica original para el tratamiento de la insuficiencia tricúspide. Cirugía Cardiovasc. 19(4):349–350, 2012. https://doi.org/10.1016/s1134-0096(12)70015-3.

    Article  Google Scholar 

  7. Dreyfus, G. D., R. P. Martin, K. M. J. Chan, F. Dulguerov, and C. Alexandrescu. Functional tricuspid regurgitation: a need to revise our understanding. J. Am. Coll. Cardiol. 65(21):2331–2336, 2015. https://doi.org/10.1016/j.jacc.2015.04.011.

    Article  PubMed  Google Scholar 

  8. Eckert, C. E., B. Zubiate, M. Vergnat, J. H. Gorman, R. C. Gorman, and M. S. Sacks. In vivo dynamic deformation of the mitral valve annulus. Ann. Biomed. Eng. 37(9):1757–1771, 2009. https://doi.org/10.1007/s10439-009-9749-3.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ghoreishi, M., J. M. Brown, C. E. Stauffer, C. A. Young, M. J. Byron, B. P. Griffith, and J. S. Gammie. Undersized tricuspid annuloplasty rings optimally treat functional tricuspid regurgitation. Ann. Thorac. Surg. 92(1):89–96, 2011. https://doi.org/10.1016/j.athoracsur.2011.03.024.

    Article  PubMed  Google Scholar 

  10. Huffman, L. C., J. S. Nelson, A. N. Lehman, M. C. Krajacic, and S. F. Bolling. Identical tricuspid ring sizing in simultaneous functional tricuspid and mitral valve repair: a simple and effective strategy. J. Thorac. Cardiovasc. Surg. 147(2):611–614, 2014. https://doi.org/10.1016/j.jtcvs.2013.01.027.

    Article  PubMed  Google Scholar 

  11. Humphrey, J. D., E. R. Dufresne, and M. A. Schwartz. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15(12):802–812, 2014. https://doi.org/10.1038/nrm3896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khoiy, K., D. Biswas, T. N. Decker, K. T. Asgarian, F. Loth, and R. Amini. Surface strains of porcine tricuspid valve septal leaflets measured in ex vivo beating hearts. J. Biomech. Eng. 138(11):111006, 2016. https://doi.org/10.1115/1.4034621.

    Article  Google Scholar 

  13. Khorsandia, M., A. Banerjeeb, H. Singhb, and A. R. Srivastava. Is a tricuspid annuloplasty ring significantly better than a de Vega’s annuloplasty stitch when repairing severe tricuspid regurgitation? Interact. Cardiovasc. Thorac. Surg. 15(1):129–135, 2012. https://doi.org/10.1093/icvts/ivs070.

    Article  Google Scholar 

  14. Kong, F., T. Pham, C. Martin, R. McKay, C. Primiano, S. Hashim, S. Kodali, and W. Sun. Finite element analysis of tricuspid valve deformation from multi-slice computed tomography images. Ann. Biomed. Eng. 46(8):1112–1127, 2018. https://doi.org/10.1007/s10439-018-2024-8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee, C. H., D. W. Laurence, C. J. Ross, K. E. Kramer, A. R. Babu, E. L. Johnson, M. C. Hsu, A. Aggarwal, A. Mir, H. M. Burkhart, R. A. Towner, R. Baumwart, Y. Wu, C. H. Lee, D. W. Laurence, C. J. Ross, K. E. Kramer, A. R. Babu, E. L. Johnson, M. C. Hsu, A. Aggarwal, A. Mir, H. M. Burkhart, R. A. Towner, R. Baumwart, and Y. Wu. Mechanics of the tricuspid valve-from clinical diagnosis/treatment, in-vivo and in-vitro investigations, to patient-specific biomechanical modeling. Bioengineering 6(2):47, 2019. https://doi.org/10.3390/bioengineering6020047.

    Article  PubMed Central  Google Scholar 

  16. Leng, S., M. Jiang, X. D. D. Zhao, J. C. Allen, G. S. Kassab, R. Z. Z. Ouyang, J. L. L. Tan, B. He, R. S. S. Tan, and L. Zhong. Three-dimensional tricuspid annular motion analysis from cardiac magnetic resonance feature-tracking. Ann. Biomed. Eng. 44(12):3522–3538, 2016. https://doi.org/10.1007/s10439-016-1695-2.

    Article  PubMed  Google Scholar 

  17. Madukauwa-David, I. D., E. L. Pierce, F. Sulejmani, J. Pataky, W. Sun, and A. P. Yoganathan. Suture dehiscence and collagen content in the human mitral and tricuspid annuli. Biomech. Model. Mechanobiol. 2018. https://doi.org/10.1007/s10237-018-1082-z.

    Article  PubMed  Google Scholar 

  18. Maghami, S., M. Ghoreishi, N. Foster, M. Y. Dawood, G. R. Hobbs, P. Stafford, D. Adawal, I. Mohammed, E. D. Z. van Rilland, X. Y. Diao, M. Walterhoefer, B. S. Taylor, B. P. Griffith, and J. S. Gammie. Undersized rigid nonplanar annuloplasty: the key to effective and durable repair of functional tricuspid regurgitation. Ann. Thorac. Surg. 102(3):735–742, 2016. https://doi.org/10.1016/j.athoracsur.2016.02.084.

    Article  PubMed  Google Scholar 

  19. Malinowski, M., T. Jaźwiec, M. Goehler, J. Bush, N. Quay, H. Ferguson, M. K. Rausch, and T. A. Timek. Impact of tricuspid annular size reduction on right ventricular function, geometry and strain. Eur. J. Cardio Thorac. Surg. 2019. https://doi.org/10.1093/ejcts/ezy484.

    Article  Google Scholar 

  20. Malinowski, M., H. Schubert, J. Wodarek, H. Ferguson, L. Eberhart, D. Langholz, T. Jazwiec, M. K. Rausch, and T. A. Timek. Tricuspid annular geometry and strain after suture annuloplasty in acute ovine right heart failure. Ann. Thorac. Surg. 106(6):1804–1811, 2018. https://doi.org/10.1016/j.athoracsur.2018.05.057.

    Article  PubMed  Google Scholar 

  21. Mangieri, A., C. Montalto, M. Pagnesi, R. J. Jabbour, J. Rodés-Cabau, N. Moat, A. Colombo, and A. Latib. Mechanism and implications of the tricuspid regurgitation: from the pathophysiology to the current and future therapeutic options. Circ. Cardiovasc. Interv. 10(7):1–13, 2017. https://doi.org/10.1161/CIRCINTERVENTIONS.117.005043.

    Article  Google Scholar 

  22. Mathur, M., T. Jazwiec, W. D. Meador, M. Malinowski, M. Goehler, H. Ferguson, T. A. Timek, and M. K. Rausch. Tricuspid valve leaflet strains in the beating ovine heart. Biomech. Model. Mechanobiol. 2019. https://doi.org/10.1007/s10237-019-01148-y.

    Article  PubMed  Google Scholar 

  23. Meador, W. D., M. Malinowski, T. Jazwiec, M. Goehler, N. Quay, T. A. Timek, and M. K. Rausch. A fiduciary marker-based framework to assess heterogeneity and anisotropy of right ventricular epicardial strains in the beating ovine heart. J. Biomech. 80:179–185, 2018. https://doi.org/10.1016/S0263-4368(02)00017-3.

    Article  PubMed  Google Scholar 

  24. Meador, W. D., M. Mathur, and M. K. Rausch. Tricuspid valve biomechanics: a brief review. In: Advances in heart valve biomechanics, edited by M. Sacks, and J. Liao. Berlin: Springer, 2018, pp. 105–114. https://doi.org/10.1007/978-3-030-01993-8_5.

    Chapter  Google Scholar 

  25. Messer, S., E. Moseley, M. Marinescu, C. Freeman, M. Goddard, and S. Nair. Histologic analysis of the right atrioventricular junction in the adult human heart. J. Heart Valve Dis. 21(3):368–373, 2012.

    PubMed  Google Scholar 

  26. Pant, A. D., V. S. Thomas, A. L. Black, T. Verba, J. G. Lesicko, and R. Amini. Pressure-induced microstructural changes in porcine tricuspid valve leaflets. Acta Biomater. 67:248–258, 2017. https://doi.org/10.1016/j.actbio.2017.11.040.

    Article  PubMed  Google Scholar 

  27. Parolari, A., F. Barili, A. Pilozzi, and D. Pacini. Ring or suture annuloplasty for tricuspid regurgitation? A meta-analysis review. Ann. Thorac. Surg. 98:2255–2263, 2014. https://doi.org/10.1016/j.athoracsur.2014.06.100.

    Article  PubMed  Google Scholar 

  28. Paul, D. M., A. Naran, E. L. Pierce, C. H. Bloodworth, S. F. Bolling, and A. P. Yoganathan. Suture dehiscence in the tricuspid annulus: an ex vivo analysis of tissue strength and composition. Ann. Thorac. Surg. 104(3):820–826, 2017. https://doi.org/10.1016/j.athoracsur.2017.02.040.

    Article  PubMed  Google Scholar 

  29. Rausch, M. K., W. Bothe, J. P. E. Kvitting, J. C. Swanson, N. B. Ingels, D. C. Miller, and E. Kuhl. Characterization of mitral valve annular dynamics in the beating heart. Ann. Biomed. Eng. 39(6):1690–1702, 2011. https://doi.org/10.1007/s10439-011-0272-y.

    Article  PubMed  Google Scholar 

  30. Rausch, M. K., W. Bothe, J. P. E. Kvitting, J. C. Swanson, D. C. Miller, and E. Kuhl. Mitral valve annuloplasty: a quantitative clinical and mechanical comparison of different annuloplasty devices. Ann. Biomed. Eng. 40(3):750–761, 2012. https://doi.org/10.1007/s10439-011-0442-y.

    Article  PubMed  Google Scholar 

  31. Rausch, M. K., M. Malinowski, W. D. Meador, P. Wilton, A. Khaghani, and T. A. Timek. The effect of acute pulmonary hypertension on tricuspid annular height, strain, and curvature in sheep. Cardiovasc. Eng. Technol. 9(3):365–376, 2018. https://doi.org/10.1007/s13239-018-0367-9.

    Article  PubMed  Google Scholar 

  32. Rausch, M. K., M. Malinowski, P. Wilton, A. Khaghani, and T. A. Timek. Engineering analysis of tricuspid annular dynamics in the beating ovine heart. Ann. Biomed. Eng. 9(3):365–376, 2017. https://doi.org/10.1007/s10439-017-1961-y.

    Article  Google Scholar 

  33. Rausch, M. K., F. A. Tibayan, N. B. Ingels, D. C. Miller, and E. Kuhl. Mechanics of the mitral annulus in chronic ischemic cardiomyopathy. Ann. Biomed. Eng. 41(10):2171–2180, 2013. https://doi.org/10.1007/s10439-013-0813-7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shinn, S. H., V. Dayan, H. V. Schaff, J. A. Dearani, L. D. Joyce, B. Lahr, K. L. Greason, J. M. Stulak, and R. C. Daly. Outcomes of ring versus suture annuloplasty for tricuspid valve repair in patients undergoing mitral valve surgery. J. Thorac. Cardiovasc. Surg. 152(2):406– 415, 2016. https://doi.org/10.1016/j.jtcvs.2016.04.068.

    Article  PubMed  Google Scholar 

  35. Singh-Gryzbon, S., V. Sadri, M. Toma, E. L. Pierce, Z. A. Wei, and A. P. Yoganathan. Development of a computational method for simulating tricuspid valve dynamics. Ann. Biomed. Eng. 47(6):1422–1434, 2019. https://doi.org/10.1007/s10439-019-02243-y.

    Article  PubMed  Google Scholar 

  36. Singh-Gryzbon, S., A. W. Siefert, E. L. Pierce, and A. P. Yoganathan. Tricuspid valve annular mechanics: interactions with and implications for transcatheter devices. Cardiovasc. Eng. Technol. 2019. https://doi.org/10.1007/s13239-019-00405-6.

    Article  PubMed  Google Scholar 

  37. Skwarek, M., J. Hreczecha, J. Jerzemowski, and M. Grzybiak. Microscopic study of right fibrous annulus. Folia Morphol. 68(1):32–35, 2009.

    Google Scholar 

  38. Spinner, E. M., D. Buice, C. H. Yap, and A. P. Yoganathan. The effects of a three-dimensional, saddle-shaped annulus on anterior and posterior leaflet stretch and regurgitation of the tricuspid valve. Ann. Biomed. Eng. 40(5):996–1005, 2012. https://doi.org/10.1007/s10439-011-0471-6.

    Article  PubMed  Google Scholar 

  39. Spinner, E. M., S. Lerakis, J. Higginson, M. Pernetz, S. Howell, E. Veledar, and A. P. Yoganathan. Correlates of tricuspid regurgitation as determined by 3D echocardiography: pulmonary arterial pressure, ventricle geometry, annular dilatation and papillary muscle displacement. Circ. Cardiovasc. Imaging 5(1):43–50, 2011. https://doi.org/10.1161/CIRCIMAGING.111.965707.

    Article  PubMed  Google Scholar 

  40. Spinner, E. M., P. Shannon, D. Buice, J. H. Jimenez, E. Veledar, P. J. Del Nido, D. H. Adams, and A. P. Yoganathan. In vitro characterization of the mechanisms responsible for functional tricuspid regurgitation. Circulation 124(8):920–929, 2011. https://doi.org/10.1161/CIRCULATIONAHA.110.003897.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the support by the internal grant from Meijer Heart and Vascular Institute at Spectrum Health and by the American Heart Association (18CDA34120028). The authors also acknowledge Jeanette Binkowski for the preparation of Fig. 1.

Conflict of interest

None of the authors have conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel K. Rausch.

Additional information

Associate Editor Arash Kheradvar oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, M., Meador, W.D., Jazwiec, T. et al. The Effect of Downsizing on the Normal Tricuspid Annulus. Ann Biomed Eng 48, 655–668 (2020). https://doi.org/10.1007/s10439-019-02387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02387-x

Keywords

Navigation