Skip to main content

Advertisement

Log in

An Analytical Review of the Numerical Methods used for Finite Element Modeling of Traumatic Brain Injury

  • State-of-the-Art Modeling and Simulation of the Brain's Response to Mechanical Loads
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Dozens of finite element models of the human brain have been developed for providing insight into the mechanical response of the brain during impact. Many models used in traumatic brain injury research are based on different computational techniques and approaches. In this study, a comprehensive review of the numerical methods implemented in 16 brain models was performed. Differences in element type, mesh size, element formulation, hourglass control, and solver were found. A parametric study using the SIMon FE brain model was performed to quantify the sensitivity of model outputs to differences in numerical implementation. Model outputs investigated in this study included nodal displacement (commonly used for validation) and maximum principal strain (commonly used for injury assessment), and these results were demonstrated using the loading characteristics of a reconstructed football concussion event. Order-of-magnitude differences in brain response were found when only changing the characteristics of the numerical method. Mesh type and mesh size had the largest effect on model response. These differences have important implications on the interpretation of results among different models simulating the same impacts, and of the results between model and in vitro experiments. Additionally, future studies need to better report the numerical methods used in the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Al-Bsharat, A. S., W. N. Hardy, K. H. Yang, T. B. Khalil, S. Tashman, and A. I. King. Brain/skull relative displacement magnitude due to blunt head impact: new experimental data and model. SAE Technical Paper, 14, 1999.

  2. Alshareef, A., J. S. Giudice, J. Forman, R. S. Salzar, and M. B. Panzer. A novel method for quantifying human in situ whole brain deformation under rotational loading using sonomicrometry. J. Neurotrauma 35:780–789, 2018.

    Article  PubMed  Google Scholar 

  3. Atsumi, N., Y. Nakahira, E. Tanaka, and M. Iwamoto. Human brain modeling with its anatomical structure and realistic material properties for brain injury prediction. Ann. Biomed. Eng. 2018. https://doi.org/10.1007/s10439-018-1988-8.

    Article  PubMed  Google Scholar 

  4. Badachhape, A. A. The relationship of three-dimensional human skull motion to brain tissue deformation in magnetic resonance elastography studies. J. Biomech. Eng. 139:051002, 2017.

    Article  Google Scholar 

  5. Badachhape, A. A., R. J. Okamoto, C. L. Johnson, and P. V. Bayly. Relationships between scalp, brain, and skull motion estimated using magnetic resonance elastography. J. Biomech. 73:40–49, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bandak, F. A., and R. H. Eppinger. A three-dimensional finite element analysis of the human brain under combined rotational and translational accelerations. SAE Technical Paper, 1994.

  7. Bardenhagen, S. G., and E. M. Kober. The generalized interpolation material point method. Comput. Model. Eng. Sci. 5:477–496, 2004.

    Google Scholar 

  8. Bayly, P. V., T. S. Cohen, E. P. Leister, D. Ajo, E. C. Leuthardt, and G. M. Genin. Deformation of the human brain induced by mild acceleration. J. Neurotrauma 22:845–856, 2005.

    Article  CAS  PubMed  Google Scholar 

  9. Beckwith, J. G., W. Zhao, S. Ji, A. G. Ajamil, R. P. Bolander, J. J. Chu, T. W. McAllister, J. J. Crisco, S. M. Duma, S. Rowson, S. P. Broglio, K. M. Guskiewicz, J. P. Mihalik, S. Anderson, B. Schnebel, P. Gunnar Brolinson, M. W. Collins, and R. M. Greenwald. Estimated brain tissue response following impacts associated with and without diagnosed concussion. Ann. Biomed. Eng. 46:819–830, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Belytschko, T., and L. P. Bindeman. Assumed strain stabilization of the eight node hexahedral element. Comput. Methods Appl. Mech. Eng. 105:225–260, 1993.

    Article  Google Scholar 

  11. Belytschko, T., J. S.-J. Ong, W. K. Liu, and J. M. Kennedy. Hourglass control in linear and nonlinear problems. Comput. Methods Appl. Mech. Eng. 43:251–276, 1984.

    Article  Google Scholar 

  12. Belytschko, T., and C.-S. Tsay. A stabilization procedure for the quadrilateral plate element with one-point quadrature. Int. J. Numer. Methods Eng. 19:405–419, 1983.

    Article  Google Scholar 

  13. Bonet, J., and A. J. Burton. A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications. Commun. Numer. Methods Eng. 14:437–449, 1998.

    Article  Google Scholar 

  14. Boyd, S. K., and R. Müller. Smooth surface meshing for automated finite element model generation from 3D image data. J. Biomech. 39:1287–1295, 2006.

    Article  PubMed  Google Scholar 

  15. Brewick, P. T., and K. Teferra. Uncertainty quantification for constitutive model calibration of brain tissue. J. Mech. Behav. Biomed. Mater. 85:237–255, 2018.

    Article  PubMed  Google Scholar 

  16. Budday, S., G. Sommer, C. Birkl, C. Langkammer, J. Haybaeck, J. Kohnert, M. Bauer, F. Paulsen, P. Steinmann, E. Kuhl, and G. A. Holzapfel. Mechanical characterization of human brain tissue. Acta Biomater. 48:319–340, 2017.

    Article  CAS  PubMed  Google Scholar 

  17. Centers for Disease Control and Prevention. Report to congress on traumatic brain injury in the United States: epidemiology and rehabilitation, 2015.

  18. Chan, D. D., A. K. Knutsen, Y.-C. Lu, S. H. Yang, E. Magrath, W.-T. Wang, P. V. Bayly, J. A. Butman, and D. L. Pham. Statistical characterization of human brain deformation during mild angular acceleration measured in vivo by tagged magnetic resonance imaging. J. Biomech. Eng. 140:101005, 2018.

    Article  Google Scholar 

  19. Chan, H. S. Mathematical model for closed head impact. SAE Technical Paper, 1974.

  20. Chatelin, S., C. Deck, F. Renard, S. Kremer, C. Heinrich, J.-P. Armspach, and R. Willinger. Computation of axonal elongation in head trauma finite element simulation. J. Mech. Behav. Biomed. Mater. 4:1905–1919, 2011.

    Article  PubMed  Google Scholar 

  21. Chen, Y., and M. Ostoja-Starzewski. MRI-based finite element modeling of head trauma: spherically focusing shear waves. Acta Mech. 213:155–167, 2010.

    Article  Google Scholar 

  22. Cloots, R. J. H., H. M. T. Gervaise, J. A. W. van Dommelen, and M. G. D. Geers. Biomechanics of traumatic brain injury: influences of the morphologic heterogeneities of the cerebral cortex. Ann. Biomed. Eng. 36:1203–1215, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deck, C., and R. Willinger. Improved head injury criteria based on head FE model. Int. J. Crashworthiness 13:667–678, 2008.

    Article  Google Scholar 

  24. Faul, M., M. M. Wald, L. Xu, and V. G. Coronado. Traumatic brain injury in the United States; emergency department visits, hospitalizations, and deaths, 2002–2006, 2010.

  25. Fernandes, F. A. O., D. Tchepel, R. J. A. de Sousa, and M. Ptak. Development and validation of a new finite element human head model: Yet another head model (YEAHM). Eng. Comput. 35:477–496, 2018.

    Article  Google Scholar 

  26. Flanagan, D. P., and T. Belytschko. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int. J. Numer. Methods Eng. 17:679–706, 1981.

    Article  Google Scholar 

  27. Gabler, L. F., J. R. Crandall, and M. B. Panzer. Investigating brain injury tolerance in the Sagittal Plane using a finite element model of the human head. Int. J. Automot. Eng. 7:37–43, 2016.

    Google Scholar 

  28. Gabler, L. F., J. R. Crandall, and M. B. Panzer. Assessment of kinematic brain injury metrics for predicting strain responses in diverse automotive impact conditions. Ann. Biomed. Eng. 44:3705–3718, 2016.

    Article  PubMed  Google Scholar 

  29. Gabler, L. F., J. R. Crandall, and M. B. Panzer. Development of a metric for predicting brain strain responses using head kinematics. Ann. Biomed. Eng. 46:972–985, 2018.

    Article  PubMed  Google Scholar 

  30. Galbraith, J. A., L. E. Thibault, and D. R. Matteson. Mechanical and electrical responses of the squid giant axon to simple elongation. J. Biomech. Eng. 115:13–22, 1993.

    Article  CAS  PubMed  Google Scholar 

  31. Ganpule, S., N. Daphalapurkar, K. T. Ramesh, A. Knutsen, D. L. Pham, P. Bayly, and J. Prince. A 3D computational human head model that captures live human brain dynamics. J. Neurotrauma 2017. https://doi.org/10.1089/neu.2016.4744.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Garimella, H. T., and R. H. Kraft. Modeling the mechanics of axonal fiber tracts using the embedded finite element method: axonal fiber mechanics using the embedded element method. Int. J. Numer. Methods Biomed. Eng. 33:e2823, 2017.

    Article  Google Scholar 

  33. Gennarelli, T. A., L. E. Thibault, J. H. Adams, D. I. Graham, C. J. Thompson, and R. P. Marcincin. Diffuse axonal injury and traumatic coma in the primate. Ann. Neurol. 12:564–574, 1982.

    Article  CAS  PubMed  Google Scholar 

  34. Gennarelli, T. A., L. E. Thibault, and D. I. Graham. Diffuse axonal injury: an important form of traumatic brain damage. The Neuroscientist 4:202–215, 1998.

    Article  Google Scholar 

  35. Gennarelli, T. A., L. E. Thibault, R. Tipperman, G. Tomei, R. Sergot, M. Brown, W. L. Maxwell, D. I. Graham, J. H. Adams, A. Irvine, et al. Axonal injury in the optic nerve: a model simulating diffuse axonal injury in the brain. J. Neurosurg. 71:244–253, 1989.

    Article  CAS  PubMed  Google Scholar 

  36. Gennarelli, T. A., L. E. Thibault, G. Tomei, R. Wiser, D. Graham, and J. Adams. Directional dependence of axonal brain injury due to centroidal and non-centroidal acceleration. SAE Technical Paper, 1987. http://papers.sae.org/872197/.

  37. Ghajari, M., P. J. Hellyer, and D. J. Sharp. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology. Brain 140:333–343, 2017.

    Article  PubMed  Google Scholar 

  38. Giordano, C., and S. Kleiven. Evaluation of axonal strain as a predictor for mild traumatic brain injuries using finite element modeling. Stapp Car Crash J. 58:29, 2014.

    PubMed  Google Scholar 

  39. Giordano, C., S. Zappalà, and S. Kleiven. Anisotropic finite element models for brain injury prediction: the sensitivity of axonal strain to white matter tract inter-subject variability. Biomech. Model. Mechanobiol. 2017. https://doi.org/10.1007/s10237-017-0887-5.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Guldberg, R. E., S. J. Hollister, and G. T. Charras. The accuracy of digital image-based finite element models. J. Biomech. Eng. 120:289, 1998.

    Article  CAS  PubMed  Google Scholar 

  41. Hallquist, J. O. LS-DYNA theory manual. Livermore Softw. Technol. Corp. 3:25–31, 2006.

    Google Scholar 

  42. Hallquist, J. O. LS-DYNA keyword user’s manual. Livermore Softw. Technol. Corp. 970:299–800, 2007.

    Google Scholar 

  43. Hardy, W. N., C. D. Foster, M. J. Mason, K. H. Yang, A. I. King, and S. Tashman. Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 45:337–368, 2001.

    CAS  PubMed  Google Scholar 

  44. Hardy, W. N., M. J. Mason, C. D. Foster, C. S. Shah, J. M. Kopacz, K. H. Yang, A. I. King, J. Bishop, M. Bey, W. Anderst, et al. A study of the response of the human cadaver head to impact. Stapp Car Crash J. 51:17, 2007.

    PubMed  PubMed Central  Google Scholar 

  45. Ho, J., H. von Holst, and S. Kleiven. Automatic generation and validation of patient-specific finite element head models suitable for crashworthiness analysis. Int. J. Crashworthiness 14:555–563, 2009.

    Article  Google Scholar 

  46. Ho, J., and S. Kleiven. Can sulci protect the brain from traumatic injury? J. Biomech. 42:2074–2080, 2009.

    Article  PubMed  Google Scholar 

  47. Ho, J., Z. Zhou, X. Li, and S. Kleiven. The peculiar properties of the falx and tentorium in brain injury biomechanics. J. Biomech. 60:243–247, 2017.

    Article  PubMed  Google Scholar 

  48. Holbourn, A. H. S. Mechanics of head injuries. The Lancet 242:438–441, 1943.

    Article  Google Scholar 

  49. Horgan, T. J., and M. D. Gilchrist. The creation of three-dimensional finite element models for simulating head impact biomechanics. Int. J. Crashworthiness 8:353–366, 2003.

    Article  Google Scholar 

  50. Hughes, T. J. The finite element method: linear static and dynamic finite element analysis. Chelmsford: Courier Corporation, 2012.

    Google Scholar 

  51. Ji, S., H. Ghadyani, R. P. Bolander, J. G. Beckwith, J. C. Ford, T. W. McAllister, L. A. Flashman, K. D. Paulsen, K. Ernstrom, S. Jain, R. Raman, L. Zhang, and R. M. Greenwald. Parametric comparisons of intracranial mechanical responses from three validated finite element models of the human head. Ann. Biomed. Eng. 42:11–24, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ji, S., W. Zhao, J. C. Ford, J. G. Beckwith, R. P. Bolander, R. M. Greenwald, L. A. Flashman, K. D. Paulsen, and T. W. McAllister. Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion. J. Neurotrauma 32:441–454, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jin, X., F. Zhu, H. Mao, M. Shen, and K. H. Yang. A comprehensive experimental study on material properties of human brain tissue. J. Biomech. 46:2795–2801, 2013.

    Article  PubMed  Google Scholar 

  54. Kenner, V. H., and W. Goldsmith. Dynamic loading of a fluid-filled spherical shell. Int. J. Mech. Sci. 14:557–568, 1972.

    Article  Google Scholar 

  55. Khalil, T. B., and R. P. Hubbard. Parametric study of head response by finite element modeling. J. Biomech. 10:119–132, 1977.

    Article  CAS  PubMed  Google Scholar 

  56. Kimpara, H., Y. Nakahira, M. Iwamoto, K. Miki, et al. Investigation of anteroposterior head-neck responses during severe frontal impacts using a brain-spinal cord complex FE model. Stapp Car Crash J. 50:509, 2006.

    PubMed  Google Scholar 

  57. Kleiven, S. Evaluation of head injury criteria using a finite element model validated against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. Int. J. Crashworthiness 11:65–79, 2006.

    Article  Google Scholar 

  58. Kleiven, S., and H. von Holst. Consequences of head size following trauma to the human head. J. Biomech. 35:153–160, 2002.

    Article  PubMed  Google Scholar 

  59. Libertiaux, V., F. Pascon, and S. Cescotto. Experimental verification of brain tissue incompressibility using digital image correlation. J. Mech. Behav. Biomed. Mater. 4:1177–1185, 2011.

    Article  CAS  PubMed  Google Scholar 

  60. Longest, P. W., and S. Vinchurkar. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. Med. Eng. Phys. 29:350–366, 2007.

    Article  PubMed  Google Scholar 

  61. Mallory, A. E. Measurement of meningeal motion using B-mode ultrasound as a step toward understanding the mechanism of subdural hematoma. Dr. Diss. The Ohio State University, 2014.

  62. Mao, H., L. Zhang, B. Jiang, V. V. Genthikatti, X. Jin, F. Zhu, R. Makwana, A. Gill, G. Jandir, A. Singh, et al. Development of a finite element human head model partially validated with thirty five experimental cases. J. Biomech. Eng. 135:111002, 2013.

    Article  PubMed  Google Scholar 

  63. Marques, M., J. Belinha, L. M. J. Dinis, and R. Natal Jorge. A brain impact stress analysis using advanced discretization meshless techniques. Proc. Inst. Mech. Eng. 232:257–270, 2018.

    Article  Google Scholar 

  64. McAllister, T. W., J. C. Ford, S. Ji, J. G. Beckwith, L. A. Flashman, K. Paulsen, and R. M. Greenwald. Maximum principal strain and strain rate associated with concussion diagnosis correlates with changes in corpus callosum white matter indices. Ann. Biomed. Eng. 40:127–140, 2012.

    Article  PubMed  Google Scholar 

  65. Miller, L. E., J. E. Urban, and J. D. Stitzel. Development and validation of an atlas-based finite element brain model. Biomech. Model. Mechanobiol. 15:1201–1214, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Miller, L. E., J. E. Urban, and J. D. Stitzel. Validation performance comparison for finite element models of the human brain. Comput. Methods Biomech. Biomed. Engin. 2017. https://doi.org/10.1080/10255842.2017.1340462.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Morrison, III, B., H. L. Cater, C. D. Benham, and L. E. Sundstrom. An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. J. Neurosci. Methods 150:192–201, 2006.

    Article  PubMed  Google Scholar 

  68. Morrison, III, B., H. L. Cater, C. C. Wang, and F. C. Thomas. A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J. 47:93, 2003.

    PubMed  Google Scholar 

  69. Nahum, A. M., R. Smith, and C. C. Ward. Intracranial pressure dynamics during head impact. SAE Technical Paper, 1977.

  70. Nicolle, S., M. Lounis, and R. Willinger. Shear properties of brain tissue over a frequency range relevant for automotive impact situations: new experimental results. SAE Technical Paper, 2004.

  71. Panzer, M. B., B. S. Myers, and C. R. Bass. Mesh considerations for finite element blast modelling in biomechanics. Comput. Methods Biomech. Biomed. Eng. 16:612–621, 2013.

    Article  Google Scholar 

  72. Panzer, M. B., B. S. Myers, B. P. Capehart, and C. R. Bass. Development of a finite element model for blast brain injury and the effects of CSF cavitation. Ann. Biomed. Eng. 40:1530–1544, 2012.

    Article  PubMed  Google Scholar 

  73. Prange, M. T., and S. S. Margulies. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124:244, 2002.

    Article  PubMed  Google Scholar 

  74. Puso, M. A. A highly efficient enhanced assumed strain physically stabilized hexahedral element. Int. J. Numer. Methods Eng. 49:1029–1064, 2000.

    Article  Google Scholar 

  75. Roache, P. J. Perspective: a method for uniform reporting of grid refinement studies. J. Fluids Eng. 116:405–413, 1994.

    Article  Google Scholar 

  76. Sahoo, D., C. Deck, and R. Willinger. Development and validation of an advanced anisotropic visco-hyperelastic human brain FE model. J. Mech. Behav. Biomed. Mater. 33:24–42, 2014.

    Article  PubMed  Google Scholar 

  77. Sanchez, E. J., L. F. Gabler, A. B. Good, J. R. Funk, J. R. Crandall, and M. B. Panzer. A reanalysis of football impact reconstructions for head kinematics and finite element modeling. Clin. Biomech. 2018. https://doi.org/10.1016/j.clinbiomech.2018.02.019.

    Article  Google Scholar 

  78. Scahill, R. I., C. Frost, R. Jenkins, J. L. Whitwell, M. N. Rossor, and N. C. Fox. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch. Neurol. 60:989, 2003.

    Article  PubMed  Google Scholar 

  79. Smith, D. H., J. A. Wolf, T. A. Lusardi, V. M.-Y. Lee, and D. F. Meaney. High tolerance and delayed elastic response of cultured axons to dynamic stretch injury. J. Neurosci. 19:4263–4269, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tadepalli, S. C., A. Erdemir, and P. R. Cavanagh. Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear. J. Biomech. 44:2337–2343, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Takhounts, E. G., M. J. Craig, K. Moorhouse, J. McFadden, and V. Hasija. Development of brain injury criteria (Br IC). Stapp Car Crash J 57:243–266, 2013.

    PubMed  Google Scholar 

  82. Takhounts, E. G., R. H. Eppinger, J. Q. Campbell, R. E. Tannous, et al. On the development of the SIMon finite element head model. Stapp Car Crash J. 47:107, 2003.

    PubMed  Google Scholar 

  83. Takhounts, E. G., S. A. Ridella, V. Hasija, R. E. Tannous, J. Q. Campbell, D. Malone, K. Danelson, J. Stitzel, S. Rowson, and S. Duma. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J. 52:1, 2008.

    PubMed  Google Scholar 

  84. Taubin, G. Geometric signal processing on polygonal meshes., 2000.

  85. Trosseille, X., C. Tarriere, F. Lavaste, F. Guillon, and A. Domont. Development of a FEM of the human head according to a specific test protocol. SAE Technical Paper, 1992.

  86. Viceconti, M., L. Bellingeri, L. Cristofolini, and A. Toni. A comparative study on different methods of automatic mesh generation of human femurs. Med. Eng. Phys. 20:1–10, 1998.

    Article  CAS  PubMed  Google Scholar 

  87. Wang, F., Y. Han, B. Wang, Q. Peng, X. Huang, K. Miller, and A. Wittek. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model. Biomech. Model. Mechanobiol. 2018. https://doi.org/10.1007/s10237-018-1021-z.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Więckowski, Z. The material point method in large strain engineering problems. Comput. Methods Appl. Mech. Eng. 193:4417–4438, 2004.

    Article  Google Scholar 

  89. Yang, B., K.-M. Tse, N. Chen, L.-B. Tan, Q.-Q. Zheng, H.-M. Yang, M. Hu, G. Pan, and H.-P. Lee. Development of a finite element head model for the study of impact head injury. BioMed Res. Int. 1–14:2014, 2014.

    Google Scholar 

  90. Zeng, W., and G. R. Liu. Smoothed finite element methods (S-FEM): An overview and recent developments. Arch. Comput. Methods Eng. 2016. https://doi.org/10.1007/s11831-016-9202-3.

    Article  Google Scholar 

  91. Zhang, L., and T. Gennarelli. Mathematical modeling of diffuse brain injury: correlations of foci and severity of brain strain with clinical symptoms and pathology. IRCOBI Impact Biomech. 74:315–324, 2011.

    Google Scholar 

  92. Zhang, L., K. H. Yang, R. Dwarampudi, K. Omori, T. Li, K. Chang, W. N. Hardy, T. B. Khalil, and A. I. King. Recent advances in brain injury research: a new human head model development and validation. Stapp Car Crash J. 45:369–394, 2001.

    CAS  PubMed  Google Scholar 

  93. Zhang, L., K. H. Yang, and A. I. King. Comparison of brain responses between frontal and lateral impacts by finite element modeling. J. Neurotrauma 18:21–30, 2001.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, L., K. H. Yang, and A. I. King. A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 126:226–236, 2004.

    Article  PubMed  Google Scholar 

  95. Zhao, W., B. Choate, and S. Ji. Material properties of the brain in injury-relevant conditions: experiments and computational modeling. J. Mech. Behav. Biomed. Mater. 80:222–234, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhao, W., and S. Ji. White matter anisotropy for impact simulation and response sampling in traumatic brain injury. J. Neurotrauma 2018. https://doi.org/10.1089/neu.2018.5634.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was performed without the support of external funding.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Panzer.

Additional information

Associate Editor Mark Horstemeyer oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giudice, J.S., Zeng, W., Wu, T. et al. An Analytical Review of the Numerical Methods used for Finite Element Modeling of Traumatic Brain Injury. Ann Biomed Eng 47, 1855–1872 (2019). https://doi.org/10.1007/s10439-018-02161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02161-5

Keywords

Navigation