Skip to main content

Advertisement

Log in

Development of a Metric for Predicting Brain Strain Responses Using Head Kinematics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Diffuse brain injuries are caused by excessive brain deformation generated primarily by rapid rotational head motion. Metrics that describe the severity of brain injury based on head motion often do not represent the governing physics of brain deformation, rendering them ineffective over a broad range of head impact conditions. This study develops a brain injury metric based on the response of a second-order mechanical system, and relates rotational head kinematics to strain-based brain injury metrics: maximum principal strain (MPS) and cumulative strain damage measure (CSDM). This new metric, universal brain injury criterion (UBrIC), is applicable over a broad range of kinematics encountered in automotive crash and sports. Efficacy of UBrIC was demonstrated by comparing it to MPS and CSDM predicted in 1600 head impacts using two different finite element (FE) brain models. Relative to existing metrics, UBrIC had the highest correlation with the FE models, and performed better in most impact conditions. While UBrIC provides a reliable measurement for brain injury assessment in a broad range of head impact conditions, and can inform helmet and countermeasure design, an injury risk function was not incorporated into its current formulation until validated strain-based risk functions can be developed and verified against human injury data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Alshareef, A., J. S. Giudice, J. Forman, R. S. Salzar, and M. B. Panzer. A novel method for quantifying human in situ whole brain deformation under rotational loading using sonomicrometry. J. Neurotrauma 2017. https://doi.org/10.1089/neu.2017.5362.

    Article  Google Scholar 

  2. Department of Transportation NHTSA Docket Number 69-7, Notice 19. Occupant Crash Protection: Head Injury Criterion, S6.2 of MVSS 208.

  3. Elkin, B. S., and B. Morrison, III. Region-specific tolerance criteria for the living brain. Stapp Car Crash J. 51:127–138, 2007.

    PubMed  Google Scholar 

  4. Forman, J., J. Michaelson, R. Kent, S. Kuppa, and O. Bostrom. Occupant restraint in the rear seat: ATD responses to standard and pre-tensioning, force-limiting belt restraints. Ann. Adv. Automot. Med. 52:141–154, 2008.

    PubMed  PubMed Central  Google Scholar 

  5. Frieden, T. R., D. Houry, and G. Baldwin. Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation. Atlanta, GA: National Center for Injury Prevention and Control, Division for Unintentional Injury Prevention, 2015.

    Google Scholar 

  6. Gabler, L. F., J. R. Crandall, and M. B. Panzer. Investigating brain injury tolerance in the sagittal plane using a finite element model of the human head. Int. J. Automot. Eng. 7:37–43, 2016.

    Google Scholar 

  7. Gabler, L. F., J. R. Crandall, and M. B. Panzer. Assessment of kinematic brain injury metrics for predicting strain responses in diverse automotive impact conditions. Ann. Biomed. Eng. 2016. https://doi.org/10.1007/s10439-016-1697-0.

    Article  PubMed  Google Scholar 

  8. Gabler, L. F., H. Joodaki, J. R. Crandall, and M. B. Panzer. Development of a single-degree-of-freedom mechanical model for predicting strain-based brain injury responses. J. Biomech. Eng. 2017. https://doi.org/10.1115/1.4038357.

    Article  Google Scholar 

  9. Gadd, C. W. Use of a Weighted-Impulse Criterion for Estimating Injury Hazard. SAE Technical Paper, 1966.

  10. Gennarelli, T. A., L. E. Thibault, and A. K. Omaya. Comparison of linear and rotational acceleration in experimental cerebral concussion. Proc. 15th Stapp Car Crash Conf., New York, 1971.

  11. Greenwald, R. M., J. T. Gwin, J. J. Chu, and J. J. Crisco. Head impact severity measures for evaluating mild traumatic brain injury risk exposure. Neurosurgery 62:789, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hardy, W. N., C. D. Foster, M. J. Mason, K. H. Yang, A. I. King, and S. Tashman. Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 45:337–368, 2001.

    PubMed  CAS  Google Scholar 

  13. Hardy, W. N., M. J. Mason, C. D. Foster, C. S. Shah, J. M. Kopacz, K. H. Yang, A. I. King, J. Bishop, M. Bey, W. Anderst, et al. A study of the response of the human cadaver head to impact. Stapp Car Crash J. 51:17, 2007.

    PubMed  PubMed Central  Google Scholar 

  14. Harmon, K. G., J. A. Drezner, M. Gammons, K. M. Guskiewicz, M. Halstead, S. A. Herring, J. S. Kutcher, A. Pana, M. Putukian, and W. O. Roberts. American Medical Society for Sports Medicine position statement: concussion in sport. Br. J. Sports Med. 47:15–26, 2013.

    Article  PubMed  Google Scholar 

  15. Holbourn, A. H. S. Mechanics of head injuries. Lancet 242:438–441, 1943.

    Article  Google Scholar 

  16. J211/1: Instrumentation for Impact Test—Part 1—Electronic Instrumentation. Warrendale, PA: SAE International.

  17. Ji, S., and W. Zhao. A pre-computed brain response atlas for instantaneous strain estimation in contact sports. Ann. Biomed. Eng. 43:1877–1895, 2015.

    Article  PubMed  Google Scholar 

  18. Kimpara, H., and M. Iwamoto. Mild traumatic brain injury predictors based on angular accelerations during impacts. Ann. Biomed. Eng. 40:114–126, 2012.

    Article  PubMed  Google Scholar 

  19. King, A. I., K. H. Yang, L. Zhang, W. Hardy, and D. C. Viano. Is head injury caused by linear or angular acceleration. IRCOBI Conf., Lisbon, Portugal, September 2003.

  20. Kleiven, S. Influence of impact direction on the human head in prediction of subdural hematoma. J. Neurotrauma 20:365–379, 2003.

    Article  PubMed  Google Scholar 

  21. Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 51:81–114, 2007.

    PubMed  Google Scholar 

  22. Laituri, T. R., R. E. El-Jawahri, S. Henry, and K. Sullivan. Field-Based Assessments of Various AIS2+ Head Risk Curves for Frontal Impact. SAE Technical Paper, 2015.

  23. Lobo, B., R. Lin, D. Brown, T. Kim, and M. Panzer. Predicting pedestrian injury metrics based on vehicle front-end design. In: Internet of Vehicles—Safe and Intelligent Mobility. Cham: Springer, 2015, pp. 114–126.

  24. Mao, H., L. Zhang, B. Jiang, V. V. Genthikatti, X. Jin, F. Zhu, R. Makwana, A. Gill, G. Jandir, A. Singh, et al. Development of a finite element human head model partially validated with thirty five experimental cases. J. Biomech. Eng. 135:111002, 2013.

    Article  PubMed  Google Scholar 

  25. Margulies, S. S., and L. E. Thibault. A proposed tolerance criterion for diffuse axonal injury in man. J. Biomech. 25:917–923, 1992.

    Article  PubMed  CAS  Google Scholar 

  26. Milton, S. J., and J. C. Arnold. Introduction to Probability and Statistics Principles and Applications for Engineering and the Computing Sciences. New York: McGraw-Hill College, 2002.

    Google Scholar 

  27. Mueller, B., A. MacAlister, J. Nolan, and D. Zuby. Comparison of HIC and BRIC head injury risk in IIHS frontal crash tests to real-world head injuries. Proc. 24th Int. Tech. Conf. Enhanc. Saf. Veh., 2015.

  28. National Operating Committee on the Standards for Athletic Equipment (NOCSAE). Standard Test Method and Equipment Used in Evaluating the Performance Characteristics of Protective Headgear/Equipment, 2012.

  29. Newman, J. A generalized acceleration model for brain injury threshold (GAMBIT). Proc. 1986 Int. IRCOBI Conf. Biomech. Impact, 1986.

  30. Newman, J. A., N. Shewchenko, and E. Welbourne. A proposed new biomechanical head injury assessment function—the maximum power index. Stapp Car Crash J. 44:215–247, 2000.

    PubMed  CAS  Google Scholar 

  31. NHTSA NVS | Vehicle Crash Test Database. www.nrd.nhtsa.dot.gov/database/VSR/veh/QueryTest.

  32. Panzer, M. B., B. S. Myers, B. P. Capehart, and C. R. Bass. Development of a finite element model for blast brain injury and the effects of CSF cavitation. Ann. Biomed. Eng. 40:1530–1544, 2012.

    Article  PubMed  Google Scholar 

  33. Patrick, L. M., H. R. Lissner, and E. S. Gurdjian. Survival by design: head protection. Proc. 7th Stapp Car Crash Field Demonstr. Conf., 1963.

  34. Rowson, S., and S. M. Duma. Brain injury prediction: assessing the combined probability of concussion using linear and rotational head acceleration. Ann. Biomed. Eng. 41:873–882, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sanchez, E. J., L. F. Gabler, J. S. McGhee, A. V. Olszko, V. C. Chancey, J. Crandall, and M. B. Panzer. Evaluation of head and brain injury risk functions using sub-injurious human volunteer data. J. Neurotrauma 2017. https://doi.org/10.1089/neu.2016.4681.

    Article  PubMed  Google Scholar 

  36. Santiago, L. A., B. C. Oh, P. K. Dash, J. B. Holcomb, and C. E. Wade. A clinical comparison of penetrating and blunt traumatic brain injuries. Brain Inj. 26:107–125, 2012.

    Article  PubMed  Google Scholar 

  37. Saunders, J., D. Parent, and E. Ames. NHTSA oblique crash test results: vehicle performance and occupant injury risk assessment in vehicles with small overlap countermeasures. In: The 24th International Technical Conference for the Enhanced Safety of Vehicles, 2015.

  38. Sullivan, S., et al. White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities. Biomech. Model. Mechanobiol. 14:877–896, 2015.

    Article  PubMed  Google Scholar 

  39. Takhounts, E. G., V. Hasija, S. A. Ridella, S. Rowson, and S. M. Duma. Kinematic Rotational Brain Injury Criterion (BRIC). Paper Number: 11-026, 2011.

  40. Takhounts, E. G., S. A. Ridella, V. Hasija, R. E. Tannous, J. Q. Campbell, D. Malone, K. Danelson, J. Stitzel, S. Rowson, and S. Duma. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J. 52:1–31, 2008.

    PubMed  Google Scholar 

  41. Takhounts, E. G., M. J. Craig, K. Moorhouse, J. McFadden, and V. Hasija. Development of brain injury criteria (Br IC). Stapp Car Crash J. 57:243–266, 2013.

    PubMed  Google Scholar 

  42. Taylor, C. A. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths—United States, 2007 and 2013. MMWR Surveill. Summ. 2017. https://doi.org/10.15585/mmwr.ss6609a1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Thibault, L. E., and T. A. Gennarelli. Biomechanics of Diffuse Brain Injuries. SAE Technical Paper, 1985.

  44. Versace, J. A Review of the Severity Index. Warrendale, PA: SAE International, 1971.

    Book  Google Scholar 

  45. Viano, D. C., C. Withnall, and D. Halstead. Impact performance of modern football helmets. Ann. Biomed. Eng. 40:160–174, 2012.

    Article  PubMed  Google Scholar 

  46. von Gierke, H. E. Transient acceleration, vibration and noise problems in space flight. In: Bioastronautics, edited by K. E. Schaefer. New York: Mac-Millan Co., 1964, p. 61.

    Google Scholar 

  47. Yanaoka, T., Y. Dokko, and Y. Takahashi. Investigation on an Injury Criterion Related to Traumatic Brain Injury Primarily Induced by Head Rotation. SAE Technical Paper, 2015.

Download references

Acknowledgments

The authors thank the Partnership for Dummy Technology and Biomechanics (PDB) for support and funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Panzer.

Additional information

Associate Editor Stefan M Duma oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabler, L.F., Crandall, J.R. & Panzer, M.B. Development of a Metric for Predicting Brain Strain Responses Using Head Kinematics. Ann Biomed Eng 46, 972–985 (2018). https://doi.org/10.1007/s10439-018-2015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2015-9

Keywords

Navigation