Skip to main content

Advertisement

Log in

A Non-Invasive Material Characterization Framework for Bioprosthetic Heart Valves

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Computational modeling and simulation has become more common in design and development of bioprosthetic heart valves. To have a reliable computational model, considering accurate mechanical properties of biological soft tissue is one of the most important steps. The goal of this study was to present a non-invasive material characterization framework to determine mechanical propertied of soft tissue employed in bioprosthetic heart valves. Using integrated experimental methods (i.e., digital image correlation measurements and hemodynamic testing in a pulse duplicator system) and numerical methods (i.e., finite element modeling and optimization), three-dimensional anisotropic mechanical properties of leaflets used in two commercially available transcatheter aortic valves (i.e., Edwards SAPIEN 3 and Medtronic CoreValve) were characterized and compared to that of a commonly used and well-examined surgical bioprosthesis (i.e., Carpentier-Edwards PERIMOUNT Magna aortic heart valve). The results of the simulations showed that the highest stress value during one cardiac cycle was at the peak of systole in the three bioprostheses. In addition, in the diastole, the peak of maximum in-plane principal stress was 0.98, 0.96, and 2.95 MPa for the PERIMOUNT Magna, CoreValve, and SAPIEN 3, respectively. Considering leaflet stress distributions, there might be a difference in the long-term durability of different TAV models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abbasi, M., and A. N. Azadani. Leaflet stress and strain distributions following incomplete transcatheter aortic valve expansion. J. Biomech. 48:3663–3671, 2015.

    Article  PubMed  Google Scholar 

  2. Abbasi, M., and A. Azadani. Stress analysis of transcatheter aortic valve leaflets under dynamic loading: effect of reduced tissue thickness. J. Heart Valve Dis. 26:386–396, 2017.

    PubMed  Google Scholar 

  3. Abbasi, M., M. S. Barakat, K. Vahidkhah, and A. N. Azadani. Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis. J. Mech. Behav. Biomed. 62:33–34, 2016.

    Article  Google Scholar 

  4. Abbasi, M., Q. Qiu, Y. Behnam, D. Dvir, C. Clary, and A. N. Azadani. High resolution three-dimensional strain mapping of bioprosthetic heart valves using digital image correlation. J. Biomech. 76:27–34, 2018. https://doi.org/10.1016/j.jbiomech.2018.05.020.

    Article  PubMed  Google Scholar 

  5. Adams, D. H., J. J. Popma, M. J. Reardon, S. J. Yakubov, J. S. Coselli, G. M. Deeb, T. G. Gleason, M. Buchbinder, J. Hermiller, Jr, N. S. Kleiman, S. Chetcuti, J. Heiser, W. Merhi, G. Zorn, P. Tadros, N. Robinson, G. Petrossian, G. C. Hughes, J. K. Harrison, J. Conte, B. Maini, M. Mumtaz, S. Chenoweth, J. K. Oh, and U. S. C. C. Investigators. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N. Engl. J. Med. 370:1790–1798, 2014.

    Article  CAS  PubMed  Google Scholar 

  6. Aggarwal, A., and M. S. Sacks. An inverse modeling approach for semilunar heart valve leaflet mechanics: exploitation of tissue structure. Biomech. Model. Mechanobiol. 15:909–932, 2016.

    Article  PubMed  Google Scholar 

  7. Arsalan, M., and T. Walther. Durability of prostheses for transcatheter aortic valve implantation. Nat Rev Cardiol 13:360–367, 2016.

    Article  CAS  PubMed  Google Scholar 

  8. Banks, A., J. Vincent, and C. Anyakoha. A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput. 7:109–124, 2008.

    Article  Google Scholar 

  9. Barakat, M., D. Dvir, and A. N. Azadani. Fluid dynamic characterization of transcatheter aortic valves using particle image velocimetry. Artif. Organs 2018. https://doi.org/10.1111/aor.13290.

    Article  PubMed  Google Scholar 

  10. Barbanti, M., A. S. Petronio, F. Ettori, A. Latib, F. Bedogni, F. De Marco, A. Poli, C. Boschetti, M. De Carlo, and C. Fiorina. 5-year outcomes after transcatheter aortic valve implantation with CoreValve prosthesis. JACC Cardiovasc. Interv. 8:1084–1091, 2015.

    Article  PubMed  Google Scholar 

  11. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. J. Biomech. Eng. 122:23–30, 2000.

    Article  CAS  PubMed  Google Scholar 

  12. Bourguignon, T., A. L. Bouquiaux-Stablo, P. Candolfi, A. Mirza, C. Loardi, M. A. May, R. El-Khoury, M. Marchand, and M. Aupart. Very long-term outcomes of the Carpentier-Edwards Perimount valve in aortic position. Ann. Thorac. Surg. 99:831–837, 2015.

    Article  PubMed  Google Scholar 

  13. Bourguignon, T., R. El Khoury, P. Candolfi, C. Loardi, A. Mirza, J. Boulanger-Lothion, A.-L. Bouquiaux-Stablo-Duncan, F. Espitalier, M. Marchand, and M. Aupart. Very long-term outcomes of the Carpentier-Edwards Perimount aortic valve in patients aged 60 or younger. Ann. Thorac. Surg. 100:853–859, 2015.

    Article  PubMed  Google Scholar 

  14. Cribier, A., H. Eltchaninoff, A. Bash, N. Borenstein, C. Tron, F. Bauer, G. Derumeaux, F. Anselme, F. Laborde, and M. B. Leon. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis first human case description. Circulation 106:3006–3008, 2002.

    Article  PubMed  Google Scholar 

  15. Dvir, D., T. Bourguignon, C. M. Otto, R. T. Hahn, R. Rosenhek, J. G. Webb, H. Treede, M. E. Sarano, T. Feldman, and H. C. Wijeysundera. Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves. Circulation 137:388–399, 2018.

    Article  PubMed  Google Scholar 

  16. Dvir, D., H. Eltchaninoff, J. Ye, A. Kan, E. Durand, A. Bizios, A. Cheung, M. Aziz, M. Simonato, and C. Tron. First look at long-term durability of transcatheter heart valves: assessment of valve function up to 10 years after implantation. Eur. J. Cardiothorac Surg., 2016.

  17. Dvir, D., H. Eltchaninoff, J. Ye, A. Kan, E. Durand, A. Bizios, A. Cheung, M. Aziz, M. Simonato, C. Tron, Y. Arbel, R. Moss, J. Leipsic, H. Ofek, G. Perlman, M. Barbanti, M. Seidman, B. Philippe, R. Yao, R. Boone, S. Lauck, S. Lichtenstein, D. Wood, A. Cribier, and J. Webb. First look at long-term durability of transcatheter heart valves: assessment of valve function up to 10-years after implantation. In: EuroPCR 2016, Paris, France, 2016.

  18. Food and Drug Administration. Reporting of Computational Modeling Studies in Medical Device Submissions—Draft Guidance for Industry and Food and Drug Administration Staff only. Rockville, MD: Food and Drug Administration, 2014.

    Google Scholar 

  19. Forcillo, J., M. Pellerin, L. P. Perrault, R. Cartier, D. Bouchard, P. Demers, and M. Carrier. Carpentier-Edwards pericardial valve in the aortic position: 25-years experience. Ann. Thorac. Surg. 96:486–493, 2013.

    Article  PubMed  Google Scholar 

  20. Fries, R. C. Reliable Design of Medical Devices. Boca Raton: CRC Press, 2016.

    Book  Google Scholar 

  21. Grunkemeier, G. L., A. P. Furnary, Y. Wu, L. Wang, and A. Starr. Durability of pericardial versus porcine bioprosthetic heart valves. J. Thorac. Cardiovasc. Surg. 144:1381–1386, 2012.

    Article  PubMed  Google Scholar 

  22. Heide-Jørgensen, S., S. K. Krishna, J. Taborsky, T. Bechsgaard, R. Zegdi, and P. Johansen. A novel method for optical high spatiotemporal strain analysis for transcatheter aortic valves in vitro. J. Biomech. Eng. 138:034504, 2016.

    Article  Google Scholar 

  23. Hiester, E. D., and M. S. Sacks. Optimal bovine pericardial tissue selection sites. I. Fiber architecture and tissue thickness measurements. J. Biomed. Mater. Res. 39:207–214, 1998.

    Article  CAS  PubMed  Google Scholar 

  24. Holzapfel, G. A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Chichester: Wiley, 2000.

    Google Scholar 

  25. Holzapfel, G. A., and R. W. Ogden. On planar biaxial tests for anisotropic nonlinearly elastic solids. A continuum mechanical framework. Math. Mech. Solids 14:474–489, 2009.

    Article  Google Scholar 

  26. Hsu, M.-C., D. Kamensky, F. Xu, J. Kiendl, C. Wang, M. C. Wu, J. Mineroff, A. Reali, Y. Bazilevs, and M. S. Sacks. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput. Mech. 55:1211–1225, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Humphrey, J. D. Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23:1–162, 1995.

    Article  CAS  PubMed  Google Scholar 

  28. Humphrey, J. D. Continuum biomechanics of soft biological tissues. Proc. R. Soc. A Math. Phys. Eng. Sci. 459:3–46, 2003.

    Article  Google Scholar 

  29. Isaacs, A. J., J. Shuhaiber, A. Salemi, O. W. Isom, and A. Sedrakyan. National trends in utilization and in-hospital outcomes of mechanical versus bioprosthetic aortic valve replacements. J. Thorac. Cardiovasc. Surg. 149:1262e.3–1269e.3, 2015.

    Article  Google Scholar 

  30. ISO 5840-1:2015. Cardiovascular implants—cardiac valve prostheses—part 1: general requirements.

  31. Jermihov, P. N., L. Jia, M. S. Sacks, R. C. Gorman, J. H. Gorman, III, and K. B. Chandran. Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovasc Eng Technol 2:48–56, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Johnston, D. R., E. G. Soltesz, N. Vakil, J. Rajeswaran, E. E. Roselli, J. F. Sabik, 3rd, N. G. Smedira, L. G. Svensson, B. W. Lytle, and E. H. Blackstone. Long-term durability of bioprosthetic aortic valves: implications from 12569 implants. Ann. Thorac. Surg. 99:1239–1247, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kapadia, S. R., M. B. Leon, R. R. Makkar, E. M. Tuzcu, L. G. Svensson, S. Kodali, J. G. Webb, M. J. Mack, P. S. Douglas, V. H. Thourani, V. C. Babaliaros, H. C. Herrmann, W. Y. Szeto, A. D. Pichard, M. R. Williams, G. P. Fontana, D. C. Miller, W. N. Anderson, C. R. Smith, J. J. Akin, and M. J. Davidson. 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet 385(9986):2485–2491, 2015.

    Article  PubMed  Google Scholar 

  34. Kim, H., J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation pericardial bioprosthetic heart valve function. J. Biomech. Eng. 128:717–724, 2006.

    Article  PubMed  Google Scholar 

  35. Kodali, S. K., M. R. Williams, C. R. Smith, L. G. Svensson, J. G. Webb, R. R. Makkar, G. P. Fontana, T. M. Dewey, V. H. Thourani, A. D. Pichard, M. Fischbein, W. Y. Szeto, S. Lim, K. L. Greason, P. S. Teirstein, S. C. Malaisrie, P. S. Douglas, R. T. Hahn, B. Whisenant, A. Zajarias, D. Wang, J. J. Akin, W. N. Anderson, and M. B. Leon. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med 366:1686–1695, 2012.

    Article  CAS  PubMed  Google Scholar 

  36. Lee, C.-H., R. Amini, R. C. Gorman, J. H. Gorman, and M. S. Sacks. An inverse modeling approach for stress estimation in mitral valve anterior leaflet valvuloplasty for in vivo valvular biomaterial assessment. J. Biomech. 47:2055–2063, 2014.

    Article  PubMed  Google Scholar 

  37. Leon, M. B., C. R. Smith, M. J. Mack, R. R. Makkar, L. G. Svensson, S. K. Kodali, V. H. Thourani, E. M. Tuzcu, D. C. Miller, H. C. Herrmann, D. Doshi, D. J. Cohen, A. D. Pichard, S. Kapadia, T. Dewey, V. Babaliaros, W. Y. Szeto, M. R. Williams, D. Kereiakes, A. Zajarias, K. L. Greason, B. K. Whisenant, R. W. Hodson, J. W. Moses, A. Trento, D. L. Brown, W. F. Fearon, P. Pibarot, R. T. Hahn, W. A. Jaber, W. N. Anderson, M. C. Alu, and J. G. Webb. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 374:1609–1620, 2016.

    Article  CAS  PubMed  Google Scholar 

  38. Leon, M. B., C. R. Smith, M. Mack, D. C. Miller, J. W. Moses, L. G. Svensson, E. M. Tuzcu, J. G. Webb, G. P. Fontana, R. R. Makkar, D. L. Brown, P. C. Block, R. A. Guyton, A. D. Pichard, J. E. Bavaria, H. C. Herrmann, P. S. Douglas, J. L. Petersen, J. J. Akin, W. N. Anderson, D. Wang, and S. Pocock. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363:1597–1607, 2010.

    Article  CAS  PubMed  Google Scholar 

  39. Mack, M., and D. Holmes. Bioprosthetic valve thrombosis: the harder one looks, the more one finds. J. Thorac. Cardiovasc. Surg. 152:952–953, 2016.

    Article  PubMed  Google Scholar 

  40. Mack, M. J., M. B. Leon, C. R. Smith, D. C. Miller, J. W. Moses, E. M. Tuzcu, J. G. Webb, P. S. Douglas, W. N. Anderson, E. H. Blackstone, S. K. Kodali, R. R. Makkar, G. P. Fontana, S. Kapadia, J. Bavaria, R. T. Hahn, V. H. Thourani, V. Babaliaros, A. Pichard, H. C. Herrmann, D. L. Brown, M. Williams, M. J. Davidson, L. G. Svensson, and J. Akin. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet 385(9986):2477–2484, 2015.

    Article  PubMed  Google Scholar 

  41. Makkar, R. R., G. P. Fontana, H. Jilaihawi, S. Kapadia, A. D. Pichard, P. S. Douglas, V. H. Thourani, V. C. Babaliaros, J. G. Webb, H. C. Herrmann, J. E. Bavaria, S. Kodali, D. L. Brown, B. Bowers, T. M. Dewey, L. G. Svensson, M. Tuzcu, J. W. Moses, M. R. Williams, R. J. Siegel, J. J. Akin, W. N. Anderson, S. Pocock, C. R. Smith, and M. B. Leon. Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. N Engl J Med 366:1696–1704, 2012.

    Article  CAS  PubMed  Google Scholar 

  42. Martin, C., and W. Sun. Comparison of transcatheter aortic valve and surgical bioprosthetic valve durability: a fatigue simulation study. J. Biomech. Eng. 48:3026–3034, 2015.

    Article  Google Scholar 

  43. Morris, P. D., A. Narracott, H. von Tengg-Kobligk, D. A. S. Soto, S. Hsiao, A. Lungu, P. Evans, N. W. Bressloff, P. V. Lawford, and D. R. Hose. Computational fluid dynamics modelling in cardiovascular medicine. Heart 102:18–28, 2016.

    Article  PubMed  Google Scholar 

  44. Murdock, K., C. Martin, and W. Sun. Characterization of mechanical properties of pericardium tissue using planar biaxial tension and flexural deformation. J. Mech. Behav. Biomed. Mater. 77:148–156, 2018.

    Article  PubMed  Google Scholar 

  45. Nishimura, R. A., C. M. Otto, R. O. Bonow, B. A. Carabello, J. P. Erwin, 3rd, R. A. Guyton, P. T. O’Gara, C. E. Ruiz, N. J. Skubas, P. Sorajja, T. M. Sundt, 3rd, and J. D. Thomas. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: a Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129:e521–643, 2014.

    PubMed  Google Scholar 

  46. Popma, J. J., D. H. Adams, M. J. Reardon, S. J. Yakubov, N. S. Kleiman, D. Heimansohn, J. Hermiller, Jr, G. C. Hughes, J. K. Harrison, J. Coselli, J. Diez, A. Kafi, T. Schreiber, T. G. Gleason, J. Conte, M. Buchbinder, G. M. Deeb, B. Carabello, P. W. Serruys, S. Chenoweth, J. K. Oh, and CoreValve United States Clinical Investigators. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J. Am. Coll. Cardiol. 63:1972–1981, 2014.

    Article  PubMed  Google Scholar 

  47. Rabkin, S. W., and P. H. Hsu. Mathematical and mechanical modeling of stress–strain relationship of pericardium. Am. J. Physiol. 229:896–900, 1975.

    Article  CAS  PubMed  Google Scholar 

  48. Reardon, M. J., N. S. Kleiman, D. H. Adams, S. J. Yakubov, J. S. Coselli, G. M. Deeb, D. O’Hair, T. G. Gleason, J. S. Lee, J. B. Hermiller, Jr, S. Chetcuti, J. Heiser, W. Merhi, G. L. Zorn, 3rd, P. Tadros, N. Robinson, G. Petrossian, G. C. Hughes, J. K. Harrison, B. Maini, M. Mumtaz, J. V. Conte, J. R. Resar, V. Aharonian, T. Pfeffer, J. K. Oh, J. Huang, and J. J. Popma. Outcomes in the randomized CoreValve US pivotal high-risk trial in patients with a society of thoracic Surgeons risk score of 7% or less. JAMA Cardiol 1(8):945–949, 2016.

    Article  PubMed  Google Scholar 

  49. Rodriguez-Gabella, T., P. Voisine, R. Puri, P. Pibarot, and J. Rodés-Cabau. Aortic bioprosthetic valve durability: incidence, mechanisms, predictors, and management of surgical and transcatheter valve degeneration. J. Am. Coll. Cardiol. 70:1013–1028, 2017.

    Article  PubMed  Google Scholar 

  50. Roy, T., and A. Chanda. Computational modelling and analysis of latest commercially available coronary stents during deployment. Procedia Mater. Sci. 5:2310–2319, 2014.

    Article  CAS  Google Scholar 

  51. Sacks, M. S. Biaxial mechanical evaluation of planar biological materials. J. Elasticity Phys. Sci. Solids 61:199, 2000.

    Article  Google Scholar 

  52. Sacks, M. S., W. Zhang, and S. Wognum. A novel fibre-ensemble level constitutive model for exogenous cross-linked collagenous tissues. Interface Focus 6:20150090, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schoen, F. J. Mechanisms of function and disease of natural and replacement heart valves. Annu. Rev. Pathol 7:161–183, 2012.

    Article  CAS  PubMed  Google Scholar 

  54. Schoen, F., R. Levy, A. Nelson, W. Bernhard, A. Nashef, and M. Hawley. Onset and progression of experimental bioprosthetic heart valve calcification. Lab. Invest. 52:523–532, 1985.

    CAS  PubMed  Google Scholar 

  55. Simionescu, D., A. Simionescu, and R. Deac. Mapping of glutaraldehyde-treated bovine pericardium and tissue selection for bioprosthetic heart valves. J. Biomed. Mater. Res. Part A 27:697–704, 1993.

    Article  CAS  Google Scholar 

  56. Smith, C. R., M. B. Leon, M. J. Mack, D. C. Miller, J. W. Moses, L. G. Svensson, E. M. Tuzcu, J. G. Webb, G. P. Fontana, R. R. Makkar, M. Williams, T. Dewey, S. Kapadia, V. Babaliaros, V. H. Thourani, P. Corso, A. D. Pichard, J. E. Bavaria, H. C. Herrmann, J. J. Akin, W. N. Anderson, D. Wang, and S. J. Pocock. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 364:2187–2198, 2011.

    Article  CAS  PubMed  Google Scholar 

  57. Soares, J. S., K. R. Feaver, W. Zhang, D. Kamensky, A. Aggarwal, and M. S. Sacks. Biomechanical behavior of bioprosthetic heart valve heterograft tissues: characterization, simulation, and performance. Cardiovasc. Eng. Technol. 7:309–351, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sun, W., A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127:905–914, 2005.

    Article  PubMed  Google Scholar 

  59. Toggweiler, S., K. H. Humphries, M. Lee, R. K. Binder, R. R. Moss, M. Freeman, J. Ye, A. Cheung, D. A. Wood, and J. G. Webb. 5-year outcome after transcatheter aortic valve implantation. J. Am. Coll. Cardiol. 61:413–419, 2013.

    Article  PubMed  Google Scholar 

  60. Vahidkhah, K., M. Barakat, M. Abbasi, S. Javani, P. N. Azadani, A. Tandar, D. Dvir, and A. N. Azadani. Valve thrombosis following transcatheter aortic valve replacement: significance of blood stasis on the leaflets. Eur. J. Cardiothorac. Surg. 51:927–935, 2017.

    PubMed  Google Scholar 

  61. Xuan, Y., K. Krishnan, J. Ye, D. Dvir, J. M. Guccione, L. Ge, and E. E. Tseng. Stent and leaflet stresses in a 26-mm first-generation balloon-expandable transcatheter aortic valve. J Thorac. Cardiovasc. Surg. 153:1065–1073, 2017.

    Article  PubMed  Google Scholar 

  62. Zhang, W., and M. S. Sacks. Modeling the response of exogenously crosslinked tissue to cyclic loading: the effects of permanent set. J. Mech. Behav. Biomed. Mater. 75:336–350, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zioupos, P., and J. Barbenel. Mechanics of native bovine pericardium: II. A structure based model for the anisotropic mechanical behaviour of the tissue. Biomaterials 15:374–382, 1994.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported partially by the American Heart Association Scientist Development Grant (AHA16SDG30920009) and by graduate scholarship from Jazan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali N. Azadani.

Additional information

Associate Editor Arash Kheradvar oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 Pressure curves acquired from the in vitro DIC tests (TIFF 114 kb).

10439_2018_2129_MOESM2_ESM.tif

Supplementary material 2 Pressure and flow waveforms of the three bioprosthetic heart valves obtained from in vitro testing in the pulse duplicator system (TIFF 67952 kb).

10439_2018_2129_MOESM3_ESM.tif

Supplementary material 3 Examples of degenerated bioprostheses. A, Carpentier-Edwards Perimount valve: leaflet tear. B, Carpentier-Edwards Magna Ease valve: leaflet calcification. C, Engager THV (Medtronic): leaflet restriction and calcification. D, Carpentier-Edwards Perimount valve: leaflet tear (ventricular side). Reprinted with permission from Dvir et al.15 (TIFF 1386 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, M., Barakat, M.S., Dvir, D. et al. A Non-Invasive Material Characterization Framework for Bioprosthetic Heart Valves. Ann Biomed Eng 47, 97–112 (2019). https://doi.org/10.1007/s10439-018-02129-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02129-5

Keywords

Navigation