Skip to main content
Log in

Development of a High-Throughput Magnetic Separation Device for Malaria-Infected Erythrocytes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study describes a non-dilutive high-gradient magnetic separation (HGMS) device intended to continuously remove malaria-infected red blood cells (iRBCs) from the circulation. A mesoscale prototype device with disposable photo-etched ferromagnetic grid and reusable permanent magnet was designed with a computationally-optimized magnetic force. The prototype device was evaluated in vitro using a non-pathogenic analog for malaria-infected blood, comprised of 24% healthy RBCs, 6% human methemoglobin RBCs (metRBCs), and 70% phosphate buffer solution (PBS). The device provided a 27.0 ± 2.2% reduction of metRBCs in a single pass at a flow rate of 77 μL min−1. This represents a clearance rate over 380 times greater throughput than microfluidic devices reported previously. These positive results encourage development of a clinical scale system that would economize time and donor blood for treating severe malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ahn, S. Y., M. Y. Shin, Y. A. Kim, J. A. Yoo, D. H. Kwak, Y. J. Jung, G. Jun, S. H. Ryu, J. S. Yeom, J. Y. Ahn, J. Y. Chai, and J. W. Park. Magnetic separation: a highly effective method for synchronization of cultured erythrocytic Plasmodium falciparum. Parasitol. Res. 102:1195–1200, 2008.

    Article  PubMed  Google Scholar 

  2. Bhakdi, S. C., A. Ottinger, S. Somsri, P. Sratongno, P. Pannadaporn, P. Chimma, P. Malasit, K. Pattanapanyasat, and H. P. H. Neumann. Optimized high gradient magnetic separation for isolation of Plasmodium-infected red blood cells. Malar. J. 9:38, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boctor, F. N. Red blood cell exchange transfusion as an adjunct treatment for severe pediatric falciparum malaria, using automated or manual procedures. Pediatrics 116:e592–e595, 2005.

    Article  PubMed  Google Scholar 

  4. Chikov, V., A. Kuznetsov, and A. Shapiro. Single cell magnetophoresis and its diagnostic value. J. Magn. Magn. Mater. 122(122):367–370, 1993.

    Article  Google Scholar 

  5. Chotivanich, K., R. Udomsangpetch, J. A. Simpson, P. Newton, S. Pukrittayakamee, S. Looareesuwan, and N. J. White. Parasite multiplication potential and the severity of falciparum malaria. J. Infect. Dis. 181:1206–1209, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Cranston, H., C. Boylan, G. Carroll, S. Sutera, J. Williamson, I. Gluzman, and D. Krogstad. Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223:400–403, 1984.

    Article  CAS  PubMed  Google Scholar 

  7. Deshpande, A., S. Kalgutkar, and S. Udani. Red cell exchange using cell separator (therapeutic erythrocytapheresis) in two children with acute severe malaria. J Assoc Physicians India 51:925–926, 2003.

    CAS  PubMed  Google Scholar 

  8. Furdui, V. I., and D. J. Harrison. Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems. Lab Chip 4:614–618, 2004.

    Article  CAS  PubMed  Google Scholar 

  9. Graham, M. D. Efficiency comparison of two preparative mechanisms for magnetic separation of erythrocytes from whole blood. J. Appl. Phys. 52:2578–2580, 1981.

    Article  Google Scholar 

  10. Hackett, S., J. Hamzah, T. M. E. Davis, and T. G. St Pierre. Magnetic susceptibility of iron in malaria-infected red blood cells. Biochim. Biophys. Acta Mol. Basis Dis 1792:93–99, 2009.

    Article  CAS  Google Scholar 

  11. Hall, A. Exchange transfusion and quinine concentrations in falciparum malaria. Br. Med. J. 291:1169–1170, 1985.

    Article  CAS  Google Scholar 

  12. Han, K.-H., and A. B. Frazier. Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip 6:265–273, 2006.

    Article  CAS  PubMed  Google Scholar 

  13. Iliescu, C., G. Xu, E. Barbarini, M. Avram, and A. Avram. Microfluidic device for continuous magnetophoretic separation of white blood cells. Microsyst. Technol. 15:1157–1162, 2009.

    Article  CAS  Google Scholar 

  14. Kang, J. H., S. Krause, H. Tobin, A. Mammoto, M. Kanapathipillai, and D. E. Ingber. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 12:2175, 2012.

    Article  CAS  PubMed  Google Scholar 

  15. Karl, S., M. David, L. Moore, B. T. Grimberg, P. Michon, I. Mueller, M. Zborowski, and P. A. Zimmerman. Enhanced detection of gametocytes by magnetic deposition microscopy predicts higher potential for Plasmodium falciparum transmission. Malar. J. 7:66, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kong, T. F., W. Ye, W. K. Peng, H. W. Hou, P. R. Preiser, N.-T. Nguyen, and J. Han. Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection. Nat. Sci. Rep. 5:1–12, 2015.

    Google Scholar 

  17. Kramer, S. L., C. C. Campbell, and R. E. Moncrieff. Fulminant Plasmodium falciparum infection treated with exchange blood transfusion. J. Am. Med. Assoc. 249:244–245, 1983.

    Article  CAS  Google Scholar 

  18. Macallan, D. C., M. Pocock, E. Bishop, D. H. Bevan, J. Parker-Williams, T. Harrison, and G. T. Robinson. Automated erythrocytapheresis in the treatment of severe falciparum malaria. J. Infect. 39:233–236, 1999.

    Article  CAS  PubMed  Google Scholar 

  19. Martin, A. B., and J. F. Antaki. Comparison of clearance of malaria-infected erythrocytes by exchange transfusion and high gradient magnetic apheresis. 2017

  20. Melville, D., F. Paul, and S. Roath. Direct magnetic separation of red cells from whole blood. Nature 255:706, 1975.

    Article  CAS  PubMed  Google Scholar 

  21. Nalbandian, R. M., D. W. Sammons, M. Manley, L. Xie, C. R. Sterling, N. B. Egen, and B. A. Gingras. A molecular-based magnet test for malaria. Am. J. Clin. Pathol. 103:57–64, 1995.

    Article  CAS  PubMed  Google Scholar 

  22. Nam, J., H. Huang, H. Lim, C. Lim, and S. Shin. Magnetic separation of malaria-infected red blood cells in various developmental stages. Anal. Chem. 85:7316–7323, 2013.

    Article  CAS  PubMed  Google Scholar 

  23. Oka, T., H. Kanayama, S. Fukui, J. Ogawa, T. Sato, M. Ooizumi, T. Terasawa, Y. Itoh, and R. Yabuno. Application of HTS bulk magnet system to the magnetic separation techniques for water purification. Phys. C Supercond 468:2128–2132, 2008.

    Article  CAS  Google Scholar 

  24. Owen, C. S. High gradient magnetic separation of erythrocytes. Biophys. J. 22:171–178, 1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pamme, N., and C. Wilhelm. Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6:974, 2006.

    Article  CAS  PubMed  Google Scholar 

  26. Paul, F., S. Roath, D. Melville, D. C. Warhurst, and J. O. S. Osisanya. Separation of malaria-infected erythrocytes from whole blood: use of a selective high-gradient magnetic separation technique. Lancet 318:70–71, 1981.

    Article  Google Scholar 

  27. Phillips, P., S. Nantel, and W. Benny. Exchange transfusion as an adjunct to the treatment of severe falciparum malaria. Rev. Infect. Dis. 12:1100–1108, 1990.

    Article  CAS  PubMed  Google Scholar 

  28. Qu, B. Y., Z. Y. Wu, F. Fang, Z. M. Bai, D. Z. Yang, and S. K. Xu. A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling. Anal. Bioanal. Chem. 392:1317–1324, 2008.

    Article  CAS  PubMed  Google Scholar 

  29. Ribaut, C., A. Berry, S. Chevalley, K. Reybier, I. Morlais, D. Parzy, F. Nepveu, F. Benoit-Vical, and A. Valentin. Concentration and purification by magnetic separation of the erythrocytic stages of all human Plasmodium species. Malar. J. 7:45, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sherman, I. W. Amino acid metabolism and protein synthesis in malarial parasites. Bull. World Health Organ. 55:265–276, 1977.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Takayasu, M., N. Duske, S. R. Ash, and F. J. Friedlaender. HGMS studies of blood cell behavior in plasma. IEEE Trans. Magn. 18:1520–1522, 1982.

    Article  Google Scholar 

  32. Trang, D. T. X., N. T. Huy, T. Kariu, K. Tajima, and K. Kamei. One-step concentration of malarial parasite-infected red blood cells and removal of contaminating white blood cells. Malar. J. 3:7, 2004.

    Article  PubMed  PubMed Central  Google Scholar 

  33. White, N. The parasite clearance curve. Malar. J. 10:278, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. World Health Organization. Guidelines for the Treatment of Malaria. Geneva: WHO Press, 2006.

    Google Scholar 

  35. World Malaria Report. 2015

  36. Wu, W.-T., A. B. Martin, A. Gandini, N. Aubry, M. Massoudi, and J. F. Antaki. Design of microfluidic channels for magnetic separation of malaria-infected red blood cells. Microfluid. Nanofluid. 20:1–11, 2016.

    Article  Google Scholar 

  37. Xia, N., T. P. Hunt, B. T. Mayers, E. Alsberg, G. M. Whitesides, R. M. Westervelt, and D. E. Ingber. Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed. Microdevices 8:299–308, 2006.

    Article  CAS  PubMed  Google Scholar 

  38. Zavodnik, I. B., E. A. Lapshina, K. Rekawiecka, L. B. Zavodnik, G. Bartosz, and M. Bryszewska. Membrane effects of nitrite-induced oxidation of human red blood cells. Biochim. Biophys. Acta 1421:306–316, 1999.

    Article  CAS  PubMed  Google Scholar 

  39. Zborowski, M., G. R. Ostera, L. R. Moore, S. Milliron, J. J. Chalmers, and A. N. Schechter. Red blood cell magnetophoresis. Biophys. J. 84:2638–2645, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Y., L. Telleria, J. M. Vinetz, D. Yawn, S. Rossmann, and A. J. Indrikovs. Erythrocytapheresis for Plasmodium falciparum infection complicated by cerebral malaria and hyperparasitemia. J. Clin. Apher. 16:15–18, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by National Institutes of Health (Grant No R01 HL089456).

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Blue Martin.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blue Martin, A., Wu, WT., Kameneva, M.V. et al. Development of a High-Throughput Magnetic Separation Device for Malaria-Infected Erythrocytes. Ann Biomed Eng 45, 2888–2898 (2017). https://doi.org/10.1007/s10439-017-1925-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1925-2

Keywords

Navigation