Skip to main content
Log in

Automated Gait Analysis Through Hues and Areas (AGATHA): A Method to Characterize the Spatiotemporal Pattern of Rat Gait

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

While rodent gait analysis can quantify the behavioral consequences of disease, significant methodological differences exist between analysis platforms and little validation has been performed to understand or mitigate these sources of variance. By providing the algorithms used to quantify gait, open-source gait analysis software can be validated and used to explore methodological differences. Our group is introducing, for the first time, a fully-automated, open-source method for the characterization of rodent spatiotemporal gait patterns, termed Automated Gait Analysis Through Hues and Areas (AGATHA). This study describes how AGATHA identifies gait events, validates AGATHA relative to manual digitization methods, and utilizes AGATHA to detect gait compensations in orthopaedic and spinal cord injury models. To validate AGATHA against manual digitization, results from videos of rodent gait, recorded at 1000 frames per second (fps), were compared. To assess one common source of variance (the effects of video frame rate), these 1000 fps videos were re-sampled to mimic several lower fps and compared again. While spatial variables were indistinguishable between AGATHA and manual digitization, low video frame rates resulted in temporal errors for both methods. At frame rates over 125 fps, AGATHA achieved a comparable accuracy and precision to manual digitization for all gait variables. Moreover, AGATHA detected unique gait changes in each injury model. These data demonstrate AGATHA is an accurate and precise platform for the analysis of rodent spatiotemporal gait patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Allen, K. D., S. B. Adams, B. A. Mata, M. F. Shamji, E. Gouze, L. Jing, D. L. Nettles, L. D. Latt, and L. A. Setton. Gait and behavior in an IL1β-mediated model of rat knee arthritis and effects of an IL1 antagonist. J. Orthop. Res. 29:694–703, 2011.

    Article  CAS  PubMed  Google Scholar 

  2. Allen, K. D., T. M. Griffin, R. M. Rodriguiz, W. C. Wetsel, B. Kraus, J. L. Huebner, L. M. Boyd, and L. A. Setton. Decreased physical function and increased pain sensitivity in mice deficient for type IX collagen. Arthritis Rheum. 60:2684–2693, 2010.

    Article  Google Scholar 

  3. Allen, K. D., B. A. Mata, M. A. Gabr, J. L. Huebner, S. B. Adams, V. B. Kraus, D. O. Schmitt, and L. A. Setton. Kinematic and dynamic gait compensations resulting from knee instability in a rat model of osteoarthritis. Arthritis Res. Ther. 14:R78, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Allen, K. D., M. F. Shamji, B. A. Mata, M. A. Gabr, S. M. Sinclair, D. O. Schmitt, W. J. Richardson, and L. A. Setton. Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism. Arthritis Res. Ther. 13:R137, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartlett, R., M. Bussey, and N. Flyger. Movement variability cannot be determined reliably from no-marker conditions. J. Biomech. 39:3076–3079, 2006.

    Article  PubMed  Google Scholar 

  6. Beare, J. E., J. R. Morehouse, W. H. Devries, G. U. Enzmann, D. A. Burke, D. S. K. Magnuson, and S. R. Whittemore. Gait analysis in normal and spinal contused mice using the TreadScan System. J. Neurotrauma 2056:2045–2056, 2009.

    Article  Google Scholar 

  7. Berryman, E. R., R. L. Harris, M. Moalli, and C. M. Bagi. Digigait quantitation of gait dynamics in rat rheumatoid arthritis model. J. Musculoskelet. Neuronal Interact. 9:89–98, 2009.

    CAS  PubMed  Google Scholar 

  8. Coulthard, P., B. J. Pleuvry, M. Brewster, K. L. Wilson, and T. V. Macfarlane. Gait analysis as an objective measure in a chronic pain model. J. Neurosci. Methods 116:197–213, 2002.

    Article  PubMed  Google Scholar 

  9. Doperalski, N., M. Sandhu, R. Bavis, P. Reier, and D. Fuller. Ventilation and phrenic output following hi cervical spinal hemisection in male vs. female rats. Respir. Physiol. Neurobiol. 18:1199–1216, 2013.

    Google Scholar 

  10. Dorman, C. W., H. E. Krug, S. P. Frizelle, S. Funkenbusch, and M. L. Mahowald. A comparison of DigiGait™ and TreadScan™ imaging systems: assessment of pain using gait analysis in murine monoarthritis. J. Pain Res. 7:25–35, 2014.

    PubMed  Google Scholar 

  11. Dougherty, B., K. Lee, E. Gonzalez-Rothi, M. Lane, P. Reier, and D. Fuller. Recover of inspiratory intercostal muscle activity following high cervical hemisection. Respir. Physiol. Neurobiol. 18:1199–1216, 2013.

    Google Scholar 

  12. Dunham, K. A., A. Siriphorn, S. Chompoopong, and C. L. Floyd. Characterization of a graded cervical hemicontusion spinal cord injury model in adult male rats. J. Neurotrauma 27:2091–2106, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fuller, D., M. Sandhu, N. Doperalski, M. Lane, T. White, M. Bishop, and P. Reier. Graded unilateral cervical spinal cord injury and respiratory motor recovery. Respir. Physiol. Neurobiol. 18:1199–1216, 2013.

    Google Scholar 

  14. Gabriel, A. F., M. A. E. Marcus, W. M. M. Honig, G. H. I. M. Walenkamp, and E. A. J. Joosten. The CatWalk method: a detailed analysis of behavioral changes after acute inflammatory pain in the rat. J. Neurosci. Methods 163:9–16, 2007.

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez-Rothi, E., G. Armstrong, A. Cerreta, G. Fitzpatric, P. Reier, M. Lane, A. Judge, and D. Fuller. Forelimb muscle plasticity following unilateral cervical spinal cord injury. Muscle Nerve 53:475–478, 2016.

    Article  PubMed  Google Scholar 

  16. Gravel, P., M. Tremblay, H. Leblond, S. Rossignol, and J. A. de Guise. A semi-automated software tool to study treadmill locomotion in the rat: from experiment videos to statistical gait analysis. J. Neurosci. Methods 190:279–288, 2010.

    Article  CAS  PubMed  Google Scholar 

  17. Hamers, F. P. T., A. J. Lankhorst, T. J. A. N. V. A. N. Laar, W. B. Veldhuis, and W. H. Gispen. Automated quantitative gait analysis during overground locomotion in the rat : its application to spinal cord contusion and transection injuries. J. Neurotrauma 18:187, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Hedrick, T. L. Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir. Biomim. 3:034001, 2008.

    Article  PubMed  Google Scholar 

  19. Hildebrand, M. Symmetrical gaits of horses. Science 150:701–708, 1965.

    Article  CAS  PubMed  Google Scholar 

  20. Hildebrand, M. Analysis of asymmetrical gaits. J. Mammol. 58:131–156, 1977.

    Article  Google Scholar 

  21. Hildebrand, M. The quadrupedal gaits of vertebrates. BioScience 39:766–774, 1989.

    Article  Google Scholar 

  22. Hill, D., P. Batchelor, M. Holden, and D. Hawkes. Medical image registration. Phys. Med. Biol. 46:R1–R45, 2001.

    Article  CAS  PubMed  Google Scholar 

  23. Jacobs, B. Y., H. E. Kloefkorn, and K. D. Allen. Gait analysis methods for rodent models of osteoarthritis. Curr. Pain Headache Rep. 18:456, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Janusz, M. Induction of osteoarthritis in the rat by surgical tear of the meniscus: inhibition of joint damage by a matrix metalloproteinase inhibitor. Osteoarthr. Cartil. 10:785–791, 2002.

    Article  CAS  PubMed  Google Scholar 

  25. Kloefkorn, H. E., B. Y. Jacobs, A. M. Loye, and K. D. Allen. Spatiotemporal gait compensations following medial collateral ligament and medial meniscus injury in the rat: correlating gait patterns to joint damage. Arthritis Res. Ther. 17:287, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Krizsan-agbas, D., M. K. Winter, L. S. Eggimann, J. Meriwether, N. E. Berman, P. G. Smith, and K. E. Mccarson. Gait analysis at multiple speeds reveals differential functional and structural outcomes in response to graded spinal cord injury. J. Neurotroma 31:846–856, 2014.

    Article  Google Scholar 

  27. Lakes, E. H., and K. D. Allen. Gait analysis methods for rodent models of arthritic disorders: reviews and recommendations. Osteoarthr. Cartil. 2016. doi:10.1016/j.joca.2016.03.008.This.

    PubMed  Google Scholar 

  28. Lane, M. A., D. D. Fuller, T. E. White, and P. J. Reier. Respiratory neuroplasticity and cervical spinal cord injury: translational perspectives. Trends Neurosci 31:538–547, 2009.

    Article  Google Scholar 

  29. Machado, A. S., D. M. Darmohray, J. Fayad, H. G. Marques, and M. R. Carey. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice. Elife 4:1–22, 2015.

    Article  Google Scholar 

  30. Malfait, A. M., C. B. Little, and J. J. McDougall. A commentary on modelling osteoarthritis pain in small animals. Osteoarthr. Cartil. 21:1316–1326, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martinez, M., M. Delcour, M. Russier, Y. Zennou-Azogui, C. Xerri, J.-O. Coq, and J.-M. Brezun. Differential tactile and motor recovery and cortical map alteration after C4-C5 spinal hemisection. Exp. Neurol. 221:186–197, 2010.

    Article  PubMed  Google Scholar 

  32. McDonough, A. L., M. Batavia, F. C. Chen, S. Kwon, and J. Ziai. The validity and reliability of the GAITRite system’s measurements: a preliminary evaluation. Arch. Phys. Med. Rehabil. 82:419–425, 2001.

    Article  CAS  PubMed  Google Scholar 

  33. Mendes, C. S., I. Bartos, Z. Márka, T. Akay, S. Márka, and R. S. Mann. Quantification of gait parameters in freely walking rodents. BMC Biol. 13:50, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Morey, R., C. Petty, Y. Xu, J. Hayes, H. Wagner, D. Lewis, K. LaBar, M. Styner, and G. McCarthy. A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage 48:1–6, 2010.

    Google Scholar 

  35. Negus, S. S., T. W. Vanderah, M. R. Brandt, E. J. Bilsky, L. Becerra, and D. Borsook. Preclinical assessment of candidate analgesic drugs: recent advances and future challenges. J. Pharmacol. Exp. Ther. 319:507–514, 2006.

    Article  CAS  PubMed  Google Scholar 

  36. Orita, S., T. Ishikawa, M. Miyagi, N. Ochiai, G. Inoue, Y. Eguchi, H. Kamoda, G. Arai, T. Toyone, Y. Aoki, T. Kubo, K. Takahashi, and S. Ohtori. Pain-related sensory innervation in monoiodoacetate-induced osteoarthritis in rat knees that gradually develops neuronal injury in addition to inflammatory pain. BMC Musculoskelet. Disord. 12:134, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pham, D. L., C. Xu, and J. L. Prince. Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2:315–337, 2000.

    Article  CAS  PubMed  Google Scholar 

  38. Sandhu, M. S., B. J. Dougherty, M. A. Lane, D. C. Bolser, P. A. Kirkwood, P. J. Reier, and D. D. Fuller. Respiratory recovery following high cervical hemisection. Respir. Physiol. Neurobiol. 169:94–101, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Scheff, S. W., A. G. Rabchevsky, I. Fugaccia, J. A. Main, and J. E. Lumpp. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J. Neurotrauma 20:179–193, 2003.

    Article  PubMed  Google Scholar 

  40. Schwartz, M. H., J. P. Trost, and R. A. Wervey. Measurement and management of errors in quantitative gait data. Gait Posture 20:196–203, 2004.

    Article  PubMed  Google Scholar 

  41. Stevenson, G. W., H. Mercer, J. Cormier, C. Dunbar, L. Benoit, C. Adams, J. Jezierski, A. Luginbuhl, and E. J. Bilsky. Monosodium iodoacetate-induced osteoarthritis produces pain-depressed wheel running in rats: Implications for preclinical behavioral assessment of chronic pain. Pharmacol. Biochem. Behav. 98:35–42, 2011.

    Article  CAS  PubMed  Google Scholar 

  42. Toia, F., T. Giesen, P. Giovanoli, and M. Calcagni. A systematic review of animal models for experimental neuroma. J. Plast. Reconstr. Aesthetic Surg. 68:1447–1463, 2015.

    Article  Google Scholar 

  43. Tsushima, H., M. E. Morris, and J. McGInley. Test-retest reliability and inter-tester reliability of kinematic data from a three-dimensional gait analysis system. J. Jpn. Phys. Ther. Assoc. 6:9–17, 2003.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vandeputte, C., J. Taymans, C. Casteels, F. Coun, Y. Ni, and K. Van Laere. Automated quantitative gait analysis in animal models of movement disorders. BMC Musculoskelet. Disord. 11:1, 2010.

    Article  Google Scholar 

  45. Wang, F., S.M. Ieee, E. Stone, W. Dai, M. Skubic, and J. Keller. Gait analysis and validation using voxel data, 2009

  46. Wilson, D. J., B. K. Smith, J. K. Gibson, K. Byung, B. C. Gaba, and J. T. Voelz. Accuracy of digitization using automated and manual methods. Phys. Ther. J. 79:558–566, 2015.

    Google Scholar 

  47. Wooley, C. M., R. B. Sher, A. Kale, W. N. Frankel, G. A. Cox, and K. L. Seburn. Gait analysis detects early changes in transgenic SOD1(G93A) mice. Muscle Nerve 32:43–50, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) of the National Institutes of Health under Award Numbers K99/R00AR057426 (Allen) and R01NS080180-01A1 (Fuller). The initial algorithms and concepts for AGATHA were developed by Dr. Kyle D. Allen during his time at Duke University (under support of F32AR056190). These initial algorithms and concepts could not have been constructed without the contributions from Mr. Ian King and Ms. Ashley Holmstrom, and their contributions to the initiation of this project are greatly appreciated.

Author Contribution

KDA conceptualized the AGATHA algorithms, which were implemented and troubleshot by HEK and TP. HEK and KDA designed and conducted the studies to evaluate AGATHA’s accuracy and precision and the study to evaluate AGATHA in an orthopaedic injury model. ST KS, EG-R, and DF designed the spinal cord injury studies, with gait data collected and analyzed by HEK. HEK and KDA conducted the statistical models to evaluate the data sets. Finally, HEK and KDA drafted the manuscript with all authors providing edits and commentary where needed. All authors have read and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle D. Allen.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kloefkorn, H.E., Pettengill, T.R., Turner, S.M.F. et al. Automated Gait Analysis Through Hues and Areas (AGATHA): A Method to Characterize the Spatiotemporal Pattern of Rat Gait. Ann Biomed Eng 45, 711–725 (2017). https://doi.org/10.1007/s10439-016-1717-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1717-0

Keywords

Navigation