Skip to main content
Log in

Liquid-Phase Laser Induced Forward Transfer for Complex Organic Inks and Tissue Engineering

  • Additive Manufacturing of Biomaterials, Tissues, and Organs
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Laser induced forward transfer (LIFT) acts as a novel alternative to incumbent plotting techniques such as inkjet printing due to its ability to precisely deposit and position picoliter-sized droplets while being gentle enough to preserve sensitive structures within the ink. Materials as simple as screen printing ink to complex eukaryotic cells have been printed with applications spanning from microelectronics to tissue engineering. Biotechnology can benefit from this technique due to the efficient use of low volumes of reagent and the compatibility with a wide range of rheological properties. In addition, LIFT can be performed in a simple lab environment, not requiring vacuum or other extreme conditions. Although the basic apparatus is simple, many strategies exist to optimize the performance considering the ink and the desired pattern. The basic mechanism is similar between studies so the large number of variants can be summarized into a couple of categories and reported on with respect to their specific applications. In particular, precise and gentle deposition of complex molecules and eukaryotic cells represent the unique abilities of this technology. LIFT has demonstrated not only marked improvements in the quality of sensors and related medical devices over those manufactured with incumbent technologies but also great applicability in tissue engineering due to the high viability of printed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Adrian, F. J., J. Bohandy, B. F. Kim, A. N. Jette, and P. Thompson. A study of the mechanism of metal deposition by the laser-induced forward transfer process. J. Vac. Sci. Technol. B 5:1490–1494, 1987.

    Article  CAS  Google Scholar 

  2. Barron, J. A., P. Wu, H. D. Ladouceur, and B. R. Ringeisen. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed. Microdevices 6:139–147, 2004.

    Article  CAS  PubMed  Google Scholar 

  3. Barron, J. A., H. D. Young, D. D. Dlott, M. M. Darfler, D. B. Krizman, and B. R. Ringeisen. Printing of protein microarrays via a capillary-free fluid. Proteomics 5:4138–4144, 2005.

    Article  CAS  PubMed  Google Scholar 

  4. Boulton-Stone, J., and J. Blake. Gas bubbles bursting at a free surface. J. Fluid Mech. 254:437–466, 1993.

    Article  CAS  Google Scholar 

  5. Boutopoulos, C., E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti. Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor. Appl. Phys. Lett. 98:093703, 2011.

    Article  Google Scholar 

  6. Boutopoulos, C., V. Tsouti, D. Goustouridis, S. Chatzandroulis, and I. Zergioti. Liquid phase direct laser printing of polymers for chemical sensing applications. Appl. Phys. Lett. 93:191109, 2008.

    Article  Google Scholar 

  7. Brasz, C. F., J. H. Yang, and C. B. Arnold. Tilting of adjacent laser-induced liquid jets. Microfluid. Nanofluidics 18:185–197, 2015.

    Article  CAS  Google Scholar 

  8. Brown, M. S., C. F. Brasz, Y. Ventikos, and C. B. Arnold. Impulsively actuated jets from thin liquid films for high-resolution printing applications. J. Fluid Mech. 709:341–370, 2012.

    Article  Google Scholar 

  9. Brown, M. S., N. T. Kattamis, and C. B. Arnold. Time-resolved dynamics of laser-induced micro-jets from thin liquid films. Microfluid. Nanofluidics 11:199–207, 2011.

    Article  Google Scholar 

  10. Chrisey, D. B., A. Pique, J. Fitz-gerald, R. C. Y. Auyeung, R. McGill, H. Wu, and M. Duignan. New approach to laser direct writing active and passive mesoscopic circuit elements. Appl. Surf. Sci. 154–155:593–600, 2000.

    Article  Google Scholar 

  11. Colina, M., M. Duocastella, P. Serra, and J. L. Morenza. Laser-induced forward transfer of liquids: study of the droplet ejection process. J. Appl. Phys. 99:084909, 2006.

    Article  Google Scholar 

  12. Dinca, V., A. Patrascioiu, J. M. Fernández-pradas, J. L. Morenza, and P. Serra. Influence of solution properties in the laser forward transfer of liquids. Appl. Surf. Sci. 258:9379–9384, 2012.

    Article  CAS  Google Scholar 

  13. Doraiswamy, A., R. J. Narayan, M. L. Harris, S. B. Qadri, R. Modi, and D. B. Chrisey. Laser microfabrication of hydroxyapatite-osteoblast-like cell composites. J. Biomed. Mater. Res. A 80:635–643, 2007.

    Article  CAS  PubMed  Google Scholar 

  14. Doraiswamy, A., R. J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. C. Y. Auyeung, and D. B. Chrisey. Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer. Appl. Surf. Sci. 252:4743–4747, 2006.

    Article  CAS  Google Scholar 

  15. Duocastella, M., J. M. Fernández-Pradas, J. L. Morenza, and P. Serra. Time-resolved imaging of the laser forward transfer of liquids. J. Appl. Phys. 106:084907, 2009.

    Article  Google Scholar 

  16. Duocastella, M., J. M. Fernández-Pradas, P. Serra, and J. L. Morenza. Jet formation in the laser forward transfer of liquids. Appl. Phys. A 93:453–456, 2008.

    Article  CAS  Google Scholar 

  17. Duocastella, M., A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra. On the correlation between droplet volume and irradiation conditions in the laser forward transfer of liquids. Appl. Phys. A 109:5–14, 2012.

    Article  CAS  Google Scholar 

  18. Duocastella, M., H. Kim, P. Serra, and A. Piqué. Optimization of laser printing of nanoparticle suspensions for microelectronic applications. Appl. Phys. A 106:471–478, 2012.

    Article  CAS  Google Scholar 

  19. Fardel, R., M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun. Energy balance in a laser-induced forward transfer process studied by shadowgraphy. J. Phys. Chem. C 113:11628–11633, 2009.

    Article  CAS  Google Scholar 

  20. Gaebel, R., N. Ma, J. Liu, J. Guan, L. Koch, C. Klopsch, M. Gruene, A. Toelk, W. Wang, P. Mark, F. Wang, B. Chichkov, W. Li, and G. Steinhoff. Biomaterials patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230, 2011.

    Article  CAS  PubMed  Google Scholar 

  21. Gruene, M., M. Pflaum, C. Hess, S. Diamantouros, S. Schlie, A. Deiwick, L. Koch, M. Wilhelmi, S. Jockenhoevel, A. Haverich, and B. Chichkov. Laser printing of three-dimensional multicellular arrays for studies of cell—cell and cell—environment interactions. Tissue Eng. Part C 17:973–982, 2011.

    Article  Google Scholar 

  22. Gruene, M., C. Unger, L. Koch, A. Deiwick, and B. Chichkov. Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting. Biomed. Eng. Online 10:19, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gudapati, H., J. Yan, Y. Huang, and D. B. Chrisey. Alginate gelation-induced cell death during laser-assisted cell printing. Biofabrication 6:035022, 2014.

    Article  PubMed  Google Scholar 

  24. Guillemot, F., A. Souquet, S. Catros, B. Guillotin, J. Lopez, M. Faucon, B. Pippenger, R. Bareille, M. Rémy, S. Bellance, P. Chabassier, J. C. Fricain, and J. Amédée. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 6:2494–2500, 2010.

    Article  CAS  PubMed  Google Scholar 

  25. Guillemot, F., B. Guillotin, A. Fontaine, M. Ali, S. Catros, V. Kériquel, J.-C. Fricain, M. Rémy, R. Bareille, and J. Amédée-Vilamitjana. Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine. MRS Bull. 36:1015–1019, 2011.

    Article  CAS  Google Scholar 

  26. Guillotin, B., S. Catros, V. Keriquel, A. Souquet, A. Fontaine, M. Remy, J. C. Fricain, and F. Guillemot. Rapid Prototyping of Complex Tissues with Laser Assisted Bioprinting (LAB). Cambridge: Woodhead Publishing Limited, pp. 156–175, 2014. doi:10.1533/9780857097217.156.

    Google Scholar 

  27. Hopp, B., D. Ph, T. Smausz, N. Kresz, and M. Sc. Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng. 11:1817–1823, 2005.

    Article  CAS  PubMed  Google Scholar 

  28. Hopp, B., T. Smausz, G. Szabo, L. Kolozsvari, D. Kafetzopoulos, C. Fotakis, and A. Nogradi. Femtosecond laser printing of living cells using absorbing film-assisted laser- induced forward transfer. Opt. Eng. 51:014302, 2013.

    Article  Google Scholar 

  29. Kaji, T., S. Ito, H. Miyasaka, Y. Hosokawa, H. Masuhara, C. Shukunami, and Y. Hiraki. Nondestructive micropatterning of living animal cells using focused femtosecond laser-induced impulsive force. Appl. Phys. Lett. 91:023904, 2007.

    Article  Google Scholar 

  30. Koch, L., M. Gruene, C. Unger, and B. Chichkov. Laser assisted cell printing. Curr. Pharm. Biotechnol. 14:91–97, 2012.

    Google Scholar 

  31. Koch, L., A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. Chichkov. Skin tissue generation by laser cell printing. Biotechnol. Bioeng. 109:1855–1863, 2012.

    Article  CAS  PubMed  Google Scholar 

  32. Kuznetsov, A. I., C. Unger, J. Koch, and B. N. Chichkov. Laser-induced jet formation and droplet ejection from thin metal films. Appl. Phys. A 106:479–487, 2012.

    Article  CAS  Google Scholar 

  33. Lewis, B. R., E. C. Kinzel, N. M. Laurendeau, R. P. Lucht, and X. Xu. Planar laser imaging and modeling of matrix-assisted pulsed-laser evaporation direct write in the bubble regime. J. Appl. Phys. 100:033107, 2006.

    Article  Google Scholar 

  34. Lin, Y., G. Huang, Y. Huang, T.-R. J. Tzeng, and D. Chrisey. Effect of laser fluence in laser-assisted direct writing of human colon cancer cell. Rapid Prototyp. J. 16:202–208, 2010.

    Article  Google Scholar 

  35. Lin, Y., Y. Huang, and D. B. Chrisey. Metallic foil-assisted laser cell printing. J. Biomech. Eng. 133:025001, 2011.

    Article  PubMed  Google Scholar 

  36. Lippert, T., A. Wokaunt, J. Stebani, O. Nuyken, and J. Ihlemann. Triazene polymers designed for excimer laser ablation. Die Angew. Makromol. Chemie 206:97–110, 1993.

    Article  CAS  Google Scholar 

  37. Mathews, S. A., M. Duignan, P. Atanassova, H. Denham, R. Modi, and R. Auyeung. An integrated tool for rapid prototyping of electronic circuits using a laser direct write technique. In: Symposia Q/EE Electroative Polymers and Rapid Prototyping. MRS Proceedings, Vol. 698, p. Q1.7.1, 2001. doi:10.1557/PROC-698-Q1.7.1.

  38. Mattle, T., A. Hintennach, T. Lippert, and A. Wokaun. Laser induced forward transfer of SnO2 for sensing applications using different precursors systems. Appl. Phys. A 110:309–316, 2013.

    Article  CAS  Google Scholar 

  39. Mattle, T., J. Shaw-stewart, A. Hintennach, C. W. Schneider, T. Lippert, and A. Wokaun. Shadowgraphic investigations into the laser-induced forward transfer of different SnO2 precursor films. Appl. Surf. Sci. 2012. doi:10.1016/j.apsusc.2012.11.146.

    Google Scholar 

  40. Mézel, C., L. Hallo, A. Souquet, J. Breil, D. Hébert, and F. Guillemot. Self-consistent modeling of jet formation process in the nanosecond laser pulse regime. Phys. Plasmas 16:123112, 2009.

    Article  Google Scholar 

  41. Michael, S., H. Sorg, C. Peck, L. Koch, A. Deiwick, B. Chichkov, P. M. Vogt, and K. Reimers. Tissue engineered skin substitutes created by laser- assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One 8:e57741, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nicolae, I., C. Viespe, and C. Grigoriu. Nanocomposite sensitive polymeric films for SAW sensors deposited by the MAPLE direct write technique. Sens. Actuat. B Chem. 158:418–422, 2011.

    Article  CAS  Google Scholar 

  43. Ovsianikov, A., M. Gruene, M. Pflaum, L. Koch, and F. Maiorana. Laser printing of cells into 3D scaffolds. Biofabrication 2:014104, 2010.

    Article  CAS  PubMed  Google Scholar 

  44. Palla-Papavlu, A., V. Dinca, T. Lippert, and M. Dinescu. Laser induced forward transfer for materials patterning. Rom. Reports Phys. 63:1285–1301, 2011.

    Google Scholar 

  45. Patrascioiu, A., M. Duocastella, J. M. Fernandez-Pradas, J. L. Morenza, and P. Serra. Liquids microprinting through a novel film-free femtosecond laser based technique. Appl. Surf. Sci. 257:5190–5194, 2011.

    Article  CAS  Google Scholar 

  46. Patrascioiu, A., J. M. Fernández-Pradas, J. L. Morenza, and P. Serra. Microdroplet deposition through a film-free laser forward printing technique. Appl. Surf. Sci. 258:9412–9416, 2012.

    Article  CAS  Google Scholar 

  47. Patrascioiu, A., C. Florian, J. M. Fernandez-Pradas, J. L. Morenza, G. Hennig, P. Delaporte, and P. Serra. Interaction between jets during laser-induced forward transfer. Appl. Phys. Lett. 105:014101, 2014.

    Article  Google Scholar 

  48. Piqué, A., D. B. Chrisey, R. C. Y. Auyeung, S. Lakeou, R. Chung, R. A. Mcgill, P. Wu, M. Duignan, J. Fitz-Gerald, and H. Wu. Laser direct writing of circuit elements and sensors. In: Proc. SPIE 3618, Laser Applications in Microelectronic and Optoelectronic Manufacturing IV (15 July 1999). doi:10.1117/12.352695.

  49. Pique, A., D. B. Chrisey, J. Fitz-Gerald, R. A. Mcgill, R. Auyeung, H. D. Wu, S. Lakeou, V. Nguyen, R. Chung, and M. Duignan. Direct writing of electronic and sensor materials using a laser transfer technique. J. Mater. Res. 15:1872–1875, 2000.

    Article  CAS  Google Scholar 

  50. Piqué, A., D. W. Weir, P. K. Wu, B. Pratap, C. B. Arnold, B. R. Ringeisen, R. A. McGill, R. C. Y. Auyeung, R. A. Kant, and D. B. Chrisey. Direct-write of sensor devices by a laser forward transfer technique. In: Proc. SPIE 4637, Photon Processing in Microelectronics and Photonics (18 June 2002). doi:10.1117/12.470642.

  51. Ringeisen, B., P. Wu, H. Kim, A. Piqué, R. Auyeung, H. Young, and D. Chrisey. Picoliter-scale protein microarrays by laser direct write. Biotechnol. Prog. 18:1126–1129, 2002.

    Article  CAS  PubMed  Google Scholar 

  52. Ringeisen, B. R., H. Kim, J. A. Barron, D. B. Krizman, D. B. Chrisey, S. Jackman, R. Y. C. Auyeung, and B. J. Spargo. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng. 10:483–491, 2004.

    Article  CAS  PubMed  Google Scholar 

  53. Robinson, P. B., J. R. Blake, T. Kodama, A. Shima, and Y. Tomita. Interaction of cavitation bubbles with a free surface. J. Appl. Phys. 89:8225–8237, 2001.

    Article  CAS  Google Scholar 

  54. Schiele, N. R., D. B. Chrisey, and D. T. Corr. Gelatin-based laser direct-write technique for the precise spatial patterning of cells. Tissue Eng. Part C 17:289–298, 2011.

    Article  Google Scholar 

  55. Serra, P., M. Duocastella, J. M. Fernández-Pradas, and J. L. Morenza. Liquids microprinting through laser-induced forward transfer. Appl. Surf. Sci. 255:5342–5345, 2009.

    Article  CAS  Google Scholar 

  56. Tekin, E., P. J. Smith, and U. S. Schubert. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4:703, 2008.

    Article  CAS  Google Scholar 

  57. Touloupakis, E., C. Boutopoulos, K. Buonasera, I. Zergioti, and M. T. Giardi. A photosynthetic biosensor with enhanced electron transfer generation realized by laser printing technology. Anal. Bioanal. Chem. 402:3237–3244, 2012.

    Article  CAS  PubMed  Google Scholar 

  58. Tsekenis, G., M. Chatzipetrou, J. Tanner, S. Chatzandroulis, D. Thanos, D. Tsoukalas, and I. Zergioti. Surface functionalization studies and direct laser printing of oligonucleotides toward the fabrication of a micromembrane DNA capacitive biosensor. Sens. Actuat. B. Chem. 175:123–131, 2012.

    Article  CAS  Google Scholar 

  59. Unger, C., M. Gruene, L. Koch, J. Koch, and B. N. Chichkov. Time-resolved imaging of hydrogel printing via laser-induced forward transfer. Appl. Phys. A 103:271–277, 2010.

    Article  Google Scholar 

  60. Wu, P. K., B. R. Ringeisen, J. Callahan, M. Brooks, D. M. Bubb, H. D. Wu, A. Pique, B. Spargo, R. A. Mcgill, and D. B. Chrisey. The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write. Thin Solid Films 398–399:607–614, 2001.

    Article  Google Scholar 

  61. Yan, J., Y. Huang, and D. B. Chrisey. Laser-assisted printing of alginate long tubes and annular constructs. Biofabrication 5:105002, 2013.

    Article  Google Scholar 

  62. Yan, J., Y. Huang, C. Xu, and D. B. Chrisey. Effects of fluid properties and laser fluence on jet formation during laser direct writing of glycerol solution. J. Appl. Phys. 112:083105, 2012.

    Article  Google Scholar 

  63. Young, D., R. C. Y. Auyeung, A. Piqué, D. B. Chrisey, and D. D. Dlott. Time-resolved optical microscopy of a laser-based forward transfer process. Appl. Phys. Lett. 78:3169, 2001.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge discussions with Lothar Koch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Narayan.

Additional information

Associate Editor Jos Malda oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, A.K., Narayan, R.J. Liquid-Phase Laser Induced Forward Transfer for Complex Organic Inks and Tissue Engineering. Ann Biomed Eng 45, 84–99 (2017). https://doi.org/10.1007/s10439-016-1617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1617-3

Keywords

Navigation