Skip to main content

Advertisement

Log in

Physical and Biological Modification of Polycaprolactone Electrospun Nanofiber by Panax Ginseng Extract for Bone Tissue Engineering Application

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Medicinal plants as a therapeutic agent with osteogenic properties can enhance fracture-healing process. In this study, the osteo-inductive potential of Asian Panax Ginseng root extract within electrospun polycaprolactone (PCL) based nanofibers has been investigated. Scanning electron microscopy images revealed that all nanofibers were highly porous and beadles with average diameter ranging from 250 to 650 nm. The incorporation of ginseng extract improved the physical characteristics (i.e., hydrophilicity) of PCL nanofibers, as well as the mechanical properties. Although ginseng extract increased the degradation rate of pure PCL nanofibers, the porous structure and morphology of fibers did not change significantly after 42 days. It was found that nanofibrous scaffolds containing ginseng extract had higher proliferation (up to ~1.5 fold) compared to the pristine PCL. The qRT-PCR analysis demonstrated the addition of ginseng extract into PCL nanofibers induced significant expression of osteogenic genes (Osteocalcin, Runx-2 and Col-1) in MSCs in a concentration dependent manner. Moreover, higher calcium content, alkaline phosphatase activity and higher mineralization of MSCs were observed compared to the pristine PCL fibers. Our results indicated the promising potential of ginseng extract as an additive to enhance osteo-inductivity, mechanical and physical properties of PCL nanofibers for bone tissue engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure  7
Figure 8

Similar content being viewed by others

References

  1. Arabi, N., and A. Zamanian. Effect of cooling rate and gelatin concentration on the microstructural and mechanical properties of ice template gelatin scaffolds. Biotechnol. Appl. Biochem. 60:573–579, 2013.

    Article  CAS  PubMed  Google Scholar 

  2. Diba, M., M. Kharaziha, M. H. Fathi, M. Gholipourmalekabadi, and A. Samadikuchaksaraei. Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration. Compos. Sci. Technol. 72:716–723, 2012.

    Article  CAS  Google Scholar 

  3. Franceschi, R. T., B. S. Iyer, and Y. Cui. Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J. Bone Miner. Res. 9:843–854, 1994.

    Article  CAS  PubMed  Google Scholar 

  4. Franceschi, R. T., and G. Xiao. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J. Cell. Biochem. 88:446–454, 2003.

    Article  CAS  PubMed  Google Scholar 

  5. Goddard, J. M., and J. Hotchkiss. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 32:698–725, 2007.

    Article  CAS  Google Scholar 

  6. Gong, Y.-S., J. Chen, Q.-Z. Zhang, and J.-T. Zhang. Effect of 17β-oestradiol and ginsenoside on osteoporosis in ovariectomised rats. J. Asian Nat. Prod. Res. 8:649–656, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Jaiswal, A. K., H. Chhabra, V. P. Soni, and J. R. Bellare. Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite. Mater. Sci. Eng. C 33:2376–2385, 2013.

    Article  CAS  Google Scholar 

  8. Jin, G., M. P. Prabhakaran, D. Kai, S. K. Annamalai, K. D. Arunachalam, and S. Ramakrishna. Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials 34:724–734, 2013.

    Article  CAS  PubMed  Google Scholar 

  9. Kang, T. H., H. M. Park, Y.-B. Kim, H. Kim, N. Kim, J.-H. Do, C. Kang, Y. Cho, and S. Y. Kim. Effects of red ginseng extract on UVB irradiation-induced skin aging in hairless mice. J. Ethnopharmacol. 123:446–451, 2009.

    Article  CAS  PubMed  Google Scholar 

  10. Kim, D. Y., M. S. Jung, Y. G. Park, H. D. Yuan, H. Y. Quan, and S. H. Chung. Ginsenoside Rh2 (S) induces the differentiation and mineralization of osteoblastic MC3T3-E1 cells through activation of PKD and p38 MAPK pathways. BMB Rep. 44:659–664, 2011.

    Article  CAS  Google Scholar 

  11. Kim, D. Y., Y. G. Park, H.-Y. Quan, S. J. Kim, M. S. Jung, and S. H. Chung. Ginsenoside Rd stimulates the differentiation and mineralization of osteoblastic MC3T3-E1 cells by activating AMP-activated protein kinase via the BMP-2 signaling pathway. Fitoterapia 83:215–222, 2012.

    Article  CAS  PubMed  Google Scholar 

  12. Komori, T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 339:189–195, 2010.

    Article  CAS  PubMed  Google Scholar 

  13. Kweon, H., M. K. Yoo, I. K. Park, T. H. Kim, H. C. Lee, H.-S. Lee, J.-S. Oh, T. Akaike, and C.-S. Cho. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 24:801–808, 2003.

    Article  CAS  PubMed  Google Scholar 

  14. Lee, J., E. Jung, J. Lee, S. Huh, J. Kim, M. Park, J. So, Y. Ham, K. Jung, C.-G. Hyun, Y. S. Kim, and D. Park. Panax ginseng induces human Type I collagen synthesis through activation of Smad signaling. J. Ethnopharmacol. 109:29–34, 2007.

    Article  CAS  PubMed  Google Scholar 

  15. Lee, H., M. Yeo, S. Ahn, D. O. Kang, C. H. Jang, H. Lee, G. M. Park, and G. H. Kim. Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 97:263–270, 2011.

    Article  PubMed  Google Scholar 

  16. Li, W.-J., J. A. Cooper, Jr, R. L. Mauck, and R. S. Tuan. Fabrication and characterization of six electrospun poly(α-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater. 2:377–385, 2006.

    Article  PubMed  Google Scholar 

  17. Li, T., G. Mazza, A. Cottrell, and L. Gao. Ginsenosides in roots and leaves of American ginseng. J. Agric. Food Chem. 44:717–720, 1996.

    Article  CAS  Google Scholar 

  18. Li, Y.-M., S.-Q. Sun, Q. Zhou, Z. Qin, J.-X. Tao, J. Wang, and X. Fang. Identification of American ginseng from different regions using FT-IR and two-dimensional correlation IR spectroscopy. Vib. Spectrosc. 36:227–232, 2004.

    Article  CAS  Google Scholar 

  19. Li, X.-D., J.-S. Wang, B. Chang, B. Chen, C. Guo, G.-Q. Hou, D.-Y. Huang, and S.-X. Du. Panax notoginseng saponins promotes proliferation and osteogenic differentiation of rat bone marrow stromal cells. J. Ethnopharmacol. 134:268–274, 2011.

    Article  CAS  PubMed  Google Scholar 

  20. Lu, Z., S.-I. Roohani-Esfahani, P. C. L. Kwok, and H. Zreiqat. Osteoblasts on rod shaped hydroxyapatite nanoparticles incorporated PCL film provide an optimal osteogenic niche for stem cell differentiation. Tissue Eng. Part A 17:1651–1661, 2011.

    Article  CAS  PubMed  Google Scholar 

  21. Lu, X.-Z., J.-H. Wang, X. Wu, L. Zhou, L. Wang, X.-W. Zhang, K.-J. Cao, and J. Huang. Ginsenoside Rg1 promotes bone marrow stromal cells proliferation via the activation of the estrogen receptor-mediated signaling pathway. Acta Pharmacol. Sin. 29:1209–1214, 2008.

    Article  CAS  PubMed  Google Scholar 

  22. Park, H., J. S. Temenoff, Y. Tabata, A. I. Caplan, and A. G. Mikos. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 28:3217–3227, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ryoo, H.-M., M.-H. Lee, and Y.-J. Kim. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene 366:51–57, 2006.

    Article  CAS  PubMed  Google Scholar 

  24. Schecroun, N., and C. Delloye. Bone-like nodules formed by human bone marrow stromal cells: comparative study and characterization. Bone 32:252–260, 2003.

    Article  CAS  PubMed  Google Scholar 

  25. Schulten, H. R., and F. Soldati. Identification of ginsenosides from Panax ginseng in fractions obtained by high-performance liquid chromatography by field desorption mass spectrometry, multiple internal reflection infrared spectroscopy and thin-layer chromatography. J. Chromatogr. A 212:37–49, 1981.

    Article  CAS  Google Scholar 

  26. Soumya, S., K. M. Sajesh, R. Jayakumar, S. V. Nair, and K. P. Chennazhi. Development of a phytochemical scaffold for bone tissue engineering using Cissus quadrangularis extract. Carbohydr. Polym. 87:1787–1795, 2012.

    Article  CAS  Google Scholar 

  27. Temenoff, J. S., H. Park, E. Jabbari, T. L. Sheffield, R. G. LeBaron, C. G. Ambrose, and A. G. Mikos. In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. J. Biomed. Mater. Res. Part A 70:235–244, 2004.

    Article  Google Scholar 

  28. Thirunavukkarasu, K., D. L. Halladay, R. R. Miles, X. Yang, R. J. Galvin, S. Chandrasekhar, T. J. Martin, and J. E. Onyia. The osteoblast-specific transcription factor Cbfa1 contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function. J. Biol. Chem. 275:25163–25172, 2000.

    Article  CAS  PubMed  Google Scholar 

  29. Vaquette, C., and J. J. Cooper-White. Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomater. 7:2544–2557, 2011.

    Article  CAS  PubMed  Google Scholar 

  30. Venugopal, J., P. Vadgama, T. S. Kumar, and S. Ramakrishna. Biocomposite nanofibres and osteoblasts for bone tissue engineering. Nanotechnology 18:055101, 2007.

    Article  Google Scholar 

  31. Wagonerjohnson, A. J., and B. A. Herschler. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 7:16–30, 2011.

    Article  CAS  Google Scholar 

  32. Wang, X., J. Nyman, X. Dong, H. Leng, and M. Reyes. Fundamental biomechanics in bone tissue engineering. Synth. Lect. Tissue Eng. 2:1–225, 2010.

    Article  Google Scholar 

  33. Wang, P., X. Wei, F. Zhang, K. Yang, C. Qu, H. Luo, and L. He. Ginsenoside Rg1 of Panax ginseng stimulates the proliferation, odontogenic/osteogenic differentiation and gene expression profiles of human dental pulp stem cells. Phytomedicine 21:177–183, 2014.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y., J. You, Y. Yu, C. Qu, H. Zhang, L. Ding, H. Zhang, and X. Li. Analysis of ginsenosides in Panax ginseng in high pressure microwave-assisted extraction. Food Chem. 110:161–167, 2008.

    Article  CAS  PubMed  Google Scholar 

  35. Wei, J., T. Igarashi, N. Okumori, T. Igarashi, T. Maetani, B. Liu, and M. Yoshinari. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed. Mater. 4:045002, 2009.

    Article  PubMed  Google Scholar 

  36. Wu, F., J. Wei, C. Liu, B. O’Neill, and Y. Ngothai. Fabrication and properties of porous scaffold of zein/PCL biocomposite for bone tissue engineering. Compos. B Eng. 43:2192–2197, 2012.

    Article  CAS  Google Scholar 

  37. Yang, F., S. K. Both, X. Yang, X. F. Walboomers, and J. A. Jansen. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomater. 5:3295–3304, 2009.

    Article  CAS  PubMed  Google Scholar 

  38. Yang, S., K.-F. Leong, Z. Du, and C.-K. Chua. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7:679–689, 2001.

    Article  CAS  PubMed  Google Scholar 

  39. Yildirim, E. D., R. Besunder, D. Pappas, F. Allen, S. Güçeri, and W. Sun. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification. Biofabrication 2:014109, 2010.

    Article  PubMed  Google Scholar 

  40. Zhang, Z.-Y., S. H. Teoh, W.-S. Chong, T.-T. Foo, Y.-C. Chng, M. Choolani, and J. Chan. A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 30:2694–2704, 2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedramin Pajoumshariati.

Additional information

Associate Editor Sean Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pajoumshariati, S., Yavari, S.K. & Shokrgozar, M.A. Physical and Biological Modification of Polycaprolactone Electrospun Nanofiber by Panax Ginseng Extract for Bone Tissue Engineering Application. Ann Biomed Eng 44, 1808–1820 (2016). https://doi.org/10.1007/s10439-015-1478-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1478-1

Keywords

Navigation