Skip to main content
Log in

Elastic property determination of nanostructured W/Cu multilayer films on a flexible substrate

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

An experimental method for a single layer is extended to determine the elastic properties of nanostructured W/Cu multilayers on a flexible substrate. The strain difference between the W/Cu-polyimide-W/Cu composite and the uncoated substrate, measured by dual digital image correlation, allows us to extract the effective Young’s modulus of W/Cu multilayers (20 periods) equaling \(216 \pm 13\hbox { GPa}\). Finite element method is then performed, which agrees well with the experiment and classical rule of mixture (ROM) theory demonstrating that the extension to multilayers is effective and reliable. The numerical analysis also interestingly shows that the strain difference is linearly related to the thickness ratio (W/Cu), periods and sublayer thickness, respectively. In contrast to ROM theory, this approach could potentially be used for the evaluation of properties and design of emerging/unknown functional multilayers, whether or not they are crystalline or amorphous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhu, T., Ju, L.: Ultra-strength materials. Prog. Mater. Sci. 55(7), 710–757 (2010)

    Article  Google Scholar 

  2. Lu, N., Wang, X., Suo, Z., et al.: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91(22), 221909 (2007)

    Article  Google Scholar 

  3. Lee, Y.J., Lee, B.H., Kim, G.S., et al.: Evaluation of conductivity in W-Cu composites through the estimation of topological microstructures. Mater. Lett. 60(16), 2000–2003 (2006)

    Article  Google Scholar 

  4. Demkowicz, M.J., Hoagland, R.G., Hirth, J.P.: Interface structure and radiation damage resistance in Cu–Nb multilayer nanocomposites. Phys. Rev. Lett. 100(13), 136102 (2008)

    Article  Google Scholar 

  5. Wang, D., Gruber, P., Volkert, C., et al.: Influences of ta passivation layers on the fatigue behavior of thin Cu films. Mater. Sci. Eng. A 610, 33–38 (2014)

    Article  Google Scholar 

  6. Luedtke, A.: Thermal management materials for high performance applications. Adv. Eng. Mater. 6(3), 142–144 (2010)

    Article  Google Scholar 

  7. Girault, B., Eyidi, D., Chauveau, T., et al.: Copper coverage effect on tungsten crystallites texture development in W/Cu nanocomposite thin films. J. Appl. Phys. 109(1), 1–21 (2011)

    Article  Google Scholar 

  8. He, W., Han, M., Wang, S., et al.: Micromechanics of substrate-supported thin films. Acta Mech. Sin. 34, 1–11 (2018)

    Article  MathSciNet  Google Scholar 

  9. Faurie, D., Renault, P.-O., Le Bourhis, E., et al.: Study of texture effect on elastic properties of Au thin films by X-ray diffraction and in situ tensile testing. Acta Mater. 54(17), 4503–4513 (2006)

    Article  Google Scholar 

  10. Denis, Y., Spaepen, F.: The yield strength of thin copper films on kapton. J. Appl. Phys. 95(6), 2991–2997 (2004)

    Article  Google Scholar 

  11. Chen, X., Kirsch, B., Senter, R., et al.: Tensile testing of thin films supported on compliant substrates. Mech. Mater. 41(7), 839–848 (2009)

    Article  Google Scholar 

  12. Vlassak, J.J., Nix, W.: A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7(12), 3242–3249 (1992)

    Article  Google Scholar 

  13. Puchi-Cabrera, E.S., Staia, M.H., Iost, A.: A description of the composite elastic modulus of multilayer coated systems. Thin Solid Films 583(1), 177–193 (2015)

    Article  Google Scholar 

  14. López-Puerto, A., Avilés, F., Gamboa, F., et al.: A vibrational approach to determine the elastic modulus of individual thin films in multilayers. Thin Solid Films 565(565), 228–236 (2014)

    Article  Google Scholar 

  15. Huang, H., Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48(12), 3261–3269 (2000)

    Article  Google Scholar 

  16. Huang, H.S., Pei, H.J., Chang, Y.C., et al.: Tensile behaviors of amorphous-ZrCu/nanocrystalline-Cu multilayered thin film on polyimide substrate. Thin Solid Films 529(1), 177–180 (2013)

    Article  Google Scholar 

  17. Kirsch, B., Chen, X., Richman, E., et al.: Probing the effects of nanoscale architecture on the mechanical properties of hexagonal silica/polymer composite thin films. Adv. Funct. Mater. 15(8), 1319–1327 (2005)

    Article  Google Scholar 

  18. He, W., Han, M., Goudeau, P., et al.: Strain transfer through film-substrate interface and surface curvature evolution during a tensile test. Appl. Surf. Sci. 434, 771–780 (2018)

    Article  Google Scholar 

  19. Faurie, D., Renault, P.-O., Bourhis, E.L., et al.: Mastering the biaxial stress state in nanometric thin films on flexible substrates. Appl. Surf. Sci. 306, 70–74 (2014)

    Article  Google Scholar 

  20. Geandier, G., Renault, P.-O., Le Bourhis, E., et al.: Elastic-strain distribution in metallic film-polymer substrate composites. Appl. Phys. Lett. 96(4), 041905 (2010)

    Article  Google Scholar 

  21. Chen, Y., Yu, K.Y., Wang, H., et al.: Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers. Int. J. Plast. 49(49), 152–163 (2013)

    Google Scholar 

  22. Chen, Y., Liu, Y., Fu, E.G., et al.: Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers. Acta Mater. 84, 393–404 (2015)

    Article  Google Scholar 

  23. He, W., Goudeau, P., Bourhis, E.L., et al.: Study on Young’s modulus of thin films on Kapton by microtensile testing combined with dual DIC system. Surf. Coat. Technol. 308, 273–279 (2016)

    Article  Google Scholar 

  24. He, W., Duan, Q., Shi, W., et al.: Elastic property characterization of soft substrate-supported thin films using multiscale digital image correlation. Opt. Lasers Eng. 121, 112–119 (2019)

    Article  Google Scholar 

  25. Pan, B., Qian, K., Xie, H., et al.: Topical review: two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol. 20(6), 152–154 (2009)

    Article  Google Scholar 

  26. Hild, F., Roux, S.: Digital image correlation: from displacement measurement to identification of elastic properties: a review. Strain 42(2), 69–80 (2006)

    Article  Google Scholar 

  27. Dong, Y., Pan, B.: A review of speckle pattern fabrication and assessment for digital image correlation. Exp. Mech. 57, 1161–1181 (2017)

    Article  Google Scholar 

  28. Pan, B., Wu, D., Xia, Y.: High-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability-guided digital image correlation. Opt. Lasers Eng. 48(9), 841–848 (2010)

    Article  Google Scholar 

  29. Mao, W., Chen, J., Si, M., et al.: High temperature digital image correlation evaluation of in-situ failure mechanism: an experimental framework with application to C/SiC composites. Mater. Sci. Eng. A 665, 26–34 (2016)

    Article  Google Scholar 

  30. Belrhiti, Y., Gallet-Doncieux, A., Germaneau, A., et al.: Application of optical methods to investigate the non-linear asymmetric behavior of ceramics exhibiting large strain to rupture by four-points bending test. J. Eur. Ceram. Soc. 32(16), 4073–4081 (2012)

    Article  Google Scholar 

  31. Djaziri, S., Renault, P.-O., Le Bourhis, E., et al.: Comparative study of the mechanical properties of nanostructured thin films on stretchable substrates. J. Appl. Phys. 116(9), 093504 (2014)

    Article  Google Scholar 

  32. Treml, R., Kozic, D., Zechner, J., et al.: High resolution determination of local residual stress gradients in single-and multilayer thin film systems. Acta Mater. 103, 616–623 (2016)

    Article  Google Scholar 

  33. Pan, B., Wu, D., Wang, Z., et al.: High-temperature digital image correlation method for full-field deformation measurement at \(1200\,^{\circ }\text{ C }\). Meas. Sci. Technol. 22, 015701 (2011)

    Article  Google Scholar 

  34. Yin, Y., Xie, H., He, W.: In situ SEM-DIC technique and its application to characterize the high-temperature fatigue crack closure effect. Sci. China Technol. Sci. (in press) (2019)

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (Grant 11802156), China Postdoctoral Science Foundation (Grant 2018M641331), and French Government Program “Investissements d’Avenir” (Labex Interactifs, Grant ANR-11-LABX-0017-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meidong Han or Shibin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Han, M., Wang, S. et al. Elastic property determination of nanostructured W/Cu multilayer films on a flexible substrate. Acta Mech. Sin. 35, 1210–1216 (2019). https://doi.org/10.1007/s10409-019-00885-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00885-8

Keywords

Navigation