Skip to main content
Log in

Numerical solutions of 2-D steady compressible natural convection using high-order flux reconstruction

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Low Mach number flows are common and typical in industrial applications. When simulating these flows, performance of traditional compressible flow solvers can deteriorate in terms of both efficiency and accuracy. In this paper, a new high-order numerical method for two-dimensional (2-D) state low Mach number flows is proposed by combining flux reconstruction (FR) and preconditioning. Firstly, a Couette flow problem is used to assess the efficiency and accuracy of preconditioned FR. It is found that the FR scheme with preconditioning is much more efficient than the original FR scheme. Meanwhile, this improvement still preserves the numerical accuracy. Using this new method and without the Boussinesq assumption, classic natural convection is directly simulated for cases of small and large temperature differences. For the small temperature difference, a p and h refinement study is conducted to verify the grid convergence and accuracy. Then, the influence of the Rayleigh number (Ra) is analyzed. By comparing with the reference results, the numerical results of preconditioned FR is very close to that calculated by incompressible solvers. Furthermore, a large temperature difference test case is calculated and analyzed, indicating this method is not limited by the Boussinesq assumption and is also applicable to heat convection with large temperature differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967). https://doi.org/10.1016/0021-9991(67)90037-X

    Article  MATH  Google Scholar 

  2. Turkel, E.: Preconditioning techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 31, 385–416 (1999). https://doi.org/10.1146/annurev.fluid.31.1.385

    Article  MathSciNet  Google Scholar 

  3. Ke, G., Aulisa, E., Bornia, G., et al.: Block triangular preconditioners for linearization schemes of the Rayleigh-Bénard convection problem. Numer. Linear Algebra Appl. 24, e2096 (2017). https://doi.org/10.1002/nla.2096

  4. Bhowmik, S.K.: A multigrid preconditioned numerical scheme for a reaction-diffusion system. Appl. Math. Comput. 254, 266–276 (2015). https://doi.org/10.1016/j.amc.2014.12.062

    MathSciNet  MATH  Google Scholar 

  5. Ke, G., Aulisa, E.: New preconditioning techniques for the steady and unsteady buoyancy driven flow problems. J. Comput. Phys. 371, 244–260 (2018). https://doi.org/10.1016/j.jcp.2018.05.037

    Article  MathSciNet  Google Scholar 

  6. Weiss, J.M., Smith, W.A.: Preconditioning applied to variable and constant density flows. AIAA J. 33, 2050–2057 (1995). https://doi.org/10.2514/3.12946

    Article  MATH  Google Scholar 

  7. Choi, Y.H., Merkle, C.L.: The application of preconditioning in viscous flows. J. Comput. Phys. 105, 207–223 (1997). https://doi.org/10.1006/jcph.1993.1069

    Article  MathSciNet  MATH  Google Scholar 

  8. Campobasso, M.S., Drofelnik, J.: Compressible Navier–Stokes analysis of an oscillating wing in a power-extraction regime using efficient low-speed preconditioning. Comput. Fluids. 67, 26–40 (2012). https://doi.org/10.1016/j.compfluid.2012.07.002

    Article  MathSciNet  MATH  Google Scholar 

  9. Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. AIAA Paper, 2007–4079 (2007). https://doi.org/10.2514/6.2007-4079

  10. Huynh, H.T.: A reconstruction approach to high-order schemes including Discontinuous Galerkin for diffusion. AIAA Paper, 2009–403 (2009). https://doi.org/10.2514/6.2009-403

  11. Wang, Z.J., Gao, H.: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys. 228, 8161–8186 (2009). https://doi.org/10.1016/j.jcp.2009.07.036

    Article  MathSciNet  MATH  Google Scholar 

  12. Jameson, A.: A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45, 348–358 (2010). https://doi.org/10.1007/s10915-009-9339-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47, 50–72 (2011). https://doi.org/10.1007/s10915-010-9420-z

    Article  MathSciNet  MATH  Google Scholar 

  14. Castonguay, P., Williams, D.M., Vincent, D.M., et al.: Energy stable flux reconstruction schemes for advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 267, 400–417 (2013). https://doi.org/10.1016/j.cma.2013.08.012

  15. Williams, D.M., Castonguay, P., Vincent, P.E.: Energy stable flux reconstruction schemes for advection-diffusion problems on triangles. J. Comput. Phys. 250, 53–76 (2013). https://doi.org/10.1016/j.jcp.2013.05.007

    Article  MathSciNet  MATH  Google Scholar 

  16. Huynh, H.T., Wang, Z.J., Vincent, P.E., et al.: High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids. Comput. Fluids 98, 209–220 (2014). https://doi.org/10.1016/j.compfluid.2013.12.007

  17. Wang, Z.J.: High-order methods for the Euler and Navier–Stokes equations on unstructured grids. Prog. Aerosp. Sci. 43, 1–41 (2007). https://doi.org/10.1016/j.paerosci.2007.05.001

    Article  Google Scholar 

  18. Lu, Y.L., Wan, H., Zhuang, L.X.: Three dimensional finite element analysis for Rayleight–Bénard convection in rectangular enclosures. Acta Mech. Sin. 2, 114–125 (2002). https://doi.org/10.1007/BF02487466

    Google Scholar 

  19. He, X.Z., Tong, P.: Space-time correlations in turbulent Rayleigh–Bénard convection. Acta Mech. Sin. 4, 457–467 (2014). https://doi.org/10.1007/s10409-014-0068-z

    Article  MATH  Google Scholar 

  20. Kizildag, D., Rodrguez, I., Oliva, A., et al.: Limits of the Oberbeck–Boussinesq approximation in a tall differentially heated cavity filled with water. Int. J. Heat Mass Transf. 68, 489–499 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.046

    Article  Google Scholar 

  21. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981). https://doi.org/10.1016/0021-9991(81)90128-5

    Article  MathSciNet  MATH  Google Scholar 

  22. Liou, M.S., Steffen, C.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993). https://doi.org/10.1006/jcph.1993.1122

    Article  MathSciNet  MATH  Google Scholar 

  23. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994). https://doi.org/10.1007/BF01414629

    Article  MATH  Google Scholar 

  24. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998). https://doi.org/10.1137/S0036142997316712

    Article  MathSciNet  MATH  Google Scholar 

  25. Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys. 138, 251–285 (1997). https://doi.org/10.1006/jcph.1997.5454

    Article  MathSciNet  MATH  Google Scholar 

  26. Peraire, J., Persson, P.O.: The compact discontinuous Galerkin method for elliptic problems. SIAM J. Sci. Comput. 30, 1806–1824 (2009). https://doi.org/10.1137/070685518

    Article  MathSciNet  Google Scholar 

  27. Bassi, F., Rebay, S.: A high-order discontinuous Galerkin method forcompressible turbulent flows. In: Cockburn, G.K.B., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation, and Application. Lecture Notes in Computational Science and Engineering, pp. 77–88. Springer, Berlin (2000)

    Chapter  Google Scholar 

  28. Davis, G.D.V., Jones, I.P.: Natural convection in a square cavity: a comparison exercise. Int. J. Numer. Methods Fluids 3, 227–248 (1983). https://doi.org/10.1002/fld.1650030304

    Article  MATH  Google Scholar 

  29. Dennis, S.C.R., Hudson, J.D.: Compact finite-difference approximations to operators of Navier–Stokes type. J. Comput. Phys. 85, 390–416 (1989). https://doi.org/10.1016/0021-9991(89)90156-3

    Article  MathSciNet  MATH  Google Scholar 

  30. Becker, R., Braack, M.: Solution of a stationary benchmark problem for natural convection with high temperature difference. Int. J. Therm. Sci. 41, 428–439 (2002). https://doi.org/10.1016/S1290-0729(02)01335-2

    Article  Google Scholar 

  31. Vierendeels, J., Riemslagh, K., Dick, E.: A multigrid semi-implicit line-method for viscous incompressible and low-Mach number flows on high aspect ratio grids. J. Comput. Phys. 154, 310–341 (1999). https://doi.org/10.1006/jcph.1999.6315

    Article  MATH  Google Scholar 

  32. Le Quéré, P., Masson, R., Perrot, P.: A Chebyshev collocation algorithm for 2D non-Boussinesq convection. J. Comput. Phys. 103, 320–335 (1992). https://doi.org/10.1016/0021-9991(92)90404-M

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingbo Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Liu, F., Zhou, T. et al. Numerical solutions of 2-D steady compressible natural convection using high-order flux reconstruction. Acta Mech. Sin. 35, 401–410 (2019). https://doi.org/10.1007/s10409-018-00835-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-00835-w

Keywords

Navigation