Skip to main content
Log in

High-order fully implicit solver for all-speed fluid dynamics

AUSM ride from nearly incompressible variable-density flows to shock dynamics

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

We introduce a novel Newton–Krylov (NK)-based fully implicit algorithm for solving fluid flows in a wide range of flow conditions—from variable density nearly incompressible to supersonic shock dynamics. The key enabling feature of our all-speed solver is the ability to efficiently solve conservation laws by choosing a set of independent variables that produce a well-conditioned Jacobian matrix for the linear iterations of the global nonlinear iterative solver. In particular, instead of choosing to discretize the conservative variables (density, momentum, total energy), which is traditionally used in Eulerian high-speed compressible fluid dynamics, we demonstrate superior performance by discretizing the primitive variables—pressure–velocity–temperature in the very low-Mach flow limits or density–velocity–temperature/entropy in the shock dynamics range. Moreover, our method allows us to avoid direct inversion of the mass matrix in discrete time derivatives, which is usually an additional source for stiffness, especially pronounced when going to very high-order schemes with non-orthogonal basis functions. Here, we show robust solutions obtained for discontinuous finite element discretization up to seventh-order accuracy. Another important aspect of the solution algorithm is the Advection Upstream Splitting Method (AUSM), adopted to compute numerical fluxes within our reconstructed discontinuous Galerkin (rDG) spatial discretization scheme. The use of the low-Mach modification of the hyperbolic flux operator is found to be necessary for enabling robust simulations of very stiff liquids and metals for Mach numbers below \(M=10^{-5}\), which is well known to be very computationally challenging for compressible solvers. We demonstrate that our fully implicit rDG-NK solver with the \({\mathrm{AUSM}}^{+}\)-up flux treatment produces efficient and high-resolution numerical solutions at all speeds, ranging from vanishing Mach numbers to transonic and supersonic, without substantial modifications of the solution procedures. (At high speed, we add limiting and use a simpler preconditioning of the Krylov solver.) Numerical examples include nearly incompressible constant-property flow past a backward-facing step with heat transfer, low-Mach variable-property channel flow of water at supercritical state, phase change and melt pool dynamics for laser spot welding and selective laser melting in additive manufacturing, and Mach 3 flow in a wind tunnel with a step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. We introduced two temperature scaling parameters , \(\bar{T}\) and \(\Delta T_{_\mathrm{g}}\), with the second one used for Boussinesq approximation.

  2. I.e., solving for \(\hbox {P}_{n}\) and reconstructing for \(\hbox {P}_m\), where the \(\hbox {P}_m\) defines the overall accuracy of the method.

  3. 3D extension is trivial.

  4. In most simulations presented here, we used the cubic backtracking, the polynomial secant minimization, or the critical-point algorithm, as implemented in PETSc [48].

  5. More specifically, we use the flexible GMRES (FGMRES) version, as needed for our iterative preconditioners [26] and implemented in PETSc [48].

  6. Here, we use the SuperLU-DIST.

  7. In this work, we will denote this limiter as “Venka.”

  8. We used the symbolic manipulation in Mathematica to generate the exact form of these source terms.

  9. Importantly, when the comparison uses the total number of the solved-for and the reconstructed DoFs, the \({\mathrm{rDG}_{{P_{_{2}}P_{_{3}}}}}\) is more accurate than the \({\mathrm{rDG}_{{P_{_{1}}P_{_{3}}}}}\), as expected, since in the \({\mathrm{rDG}_{{P_{_{1}}P_{_{3}}}}}\) the solution curvatures (second derivatives) are reconstructed, which contributes additional discretization errors.

  10. The hydraulic radius is defined as \(R_{_\mathrm{h}}=\frac{2 A_\mathrm{f}}{P_\mathrm{w}}\), where the \(A_\mathrm{f}\) and the \(P_\mathrm{w}\) are the cross-sectional area of the flow and the wetted perimeter of the cross section, respectively.

  11. The Courant–Friedrichs–Lewy (CFL) numbers are defined as \(\mathrm{CFL}_{_\mathrm{mat}}=\frac{\left| \mathbf{v} \right| \Delta t}{\Delta h}\) and \(\mathrm{CFL}_{_\mathrm{aco}}=\frac{\bar{c}_{_\mathrm{s}}\Delta t}{\Delta h}\), where \(\Delta t\) and \(\Delta h\) are the time step and the mesh scale, respectively.

  12. The mesh Fourier numbers are defined as \(\mathrm{Fo}_{_{\mu }}=\frac{\nu \Delta t}{\Delta h^2}\) and \(\mathrm{Fo}_{_{\kappa }}=\frac{\alpha \Delta t}{\Delta h^2}\).

  13. We do not use the restarted GMRES.

  14. In the future, we plan to include these effects by modeling the free surface with the sharp-interface level set approach.

  15. The \({{\mathcal {R}}}32\) is the 32 times refined \({{\mathcal {R}}}1\).

  16. There is an additional noticeable advantage in the performance, since the computationally expensive limiter is evaluated only at the first \(m_\mathrm{L}\) iterations of the nonlinear solver.

References

  1. Chorin, A.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967). https://doi.org/10.1006/jcph.1997.5716

    Article  MATH  Google Scholar 

  2. Patankar, S.: Numerical Heat Transfer and Fluid Flow. Taylor & Francis, Philadelphia (1980)

    MATH  Google Scholar 

  3. Colella, P., Pao, K.: A projection method for low speed flows. J. Comput. Phys. 149, 245–269 (1999). https://doi.org/10.1006/jcph.1998.6152

    Article  MathSciNet  MATH  Google Scholar 

  4. Brown, D.L., Cortez, R., Minion, M.L.: Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168, 464–499 (2001). https://doi.org/10.1006/jcph.2001.6715

    Article  MathSciNet  MATH  Google Scholar 

  5. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, 2nd edn. Springer, Berlin (1999). https://doi.org/10.1007/B79761

    Book  MATH  Google Scholar 

  6. Barth, T.: Numerical Methods for Conservation Laws on Structured and Unstructured Meshes. Lecture Series. von Karman Institute (2003)

  7. Harlow, F.H., Amsden, A.A.: A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8, 197–213 (1971). https://doi.org/10.1016/0021-9991(71)90002-7

    Article  MATH  Google Scholar 

  8. Turkel, E.: Preconditioned methods for solving incompressible and low speed compressible equations. J. Comput. Phys. 72, 277–298 (1987). https://doi.org/10.1016/0021-9991(87)90084-2

    Article  MATH  Google Scholar 

  9. Choi, Y., Merkle, C.: The application of preconditioning in viscous flows. J. Comput. Phys. 105, 207–223 (1993). https://doi.org/10.1006/jcph.1993.1069

    Article  MathSciNet  MATH  Google Scholar 

  10. Weiss, J., Smith, W.: Preconditioning applied to variable and constant density time-accurate flows on unstructured meshes. AIAA Paper 1994-2209 (1994). https://doi.org/10.2514/6.1994-2209

  11. van Leer, B., Lee, W., Roe, P.: Characteristic time stepping or local preconditioning of the Euler equations. 10th AIAA CFD Conference, AIAA Paper 91-1552-CP (1991). https://doi.org/10.2514/6.1991-1552

  12. Chima, R., Liou, M.S.: Comparison of the AUSM+ and H-CUSP schemes for turbomachinery applications. 16th AIAA CFD Conference, AIAA Paper 2003-4120 (2003). https://doi.org/10.2514/6.2003-4120

  13. Edwards, J., Liou, M.S.: Low-diffusion flux-splitting methods for flows at all speeds. AIAA J. 36, 1610–1617 (1998). https://doi.org/10.2514/2.587

    Article  Google Scholar 

  14. Liou, M.S., Edwards, J.: Numerical speed of sound and its application to schemes for all speeds. AIAA Paper 2000-4404 (2000). https://doi.org/10.2514/6.1999-3268

  15. Liou, M.S., Buning, P.: Contribution of the recent AUSM schemes to the OVERFLOW code: implementation and validation. 14th AIAA CFD Conference, AIAA Paper 99-3268 (1999). https://doi.org/10.2514/6.2000-4404

  16. Mary, I., Sagaut, P., Deville, M.: An algorithm for unsteady viscous flows at all speeds. Int. J. Numer. Methods Fluids 34, 371–401 (2000). https://doi.org/10.1002/1097-0363(20001115)34:5%3c371::AID-FLD54%3e3.0.CO;2-W

    Article  MATH  Google Scholar 

  17. Chang, C., Liou, M.: A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM\(^+\)-up scheme. J. Comput. Phys. 225, 840–873 (2007). https://doi.org/10.1016/j.jcp.2007.01.007

    Article  MathSciNet  MATH  Google Scholar 

  18. Guillard, H., Viozat, C.: On the behaviour of the upwind schemes in the low Mach number limit. Comput. Fluids 28, 63–86 (1999). https://doi.org/10.1016/S0045-7930(98)00017-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Liou, M.: A sequel to AUSM, part II: AUSM\(^+\)-up for all speeds. J. Comput. Phys. 214, 137–170 (2006). https://doi.org/10.1016/j.jcp.2005.09.020

    Article  MathSciNet  MATH  Google Scholar 

  20. Rieper, F.: A low-Mach number fix for Roe’s approximate Riemann solver. J. Comput. Phys. 230, 5263–5287 (2011). https://doi.org/10.1016/j.jcp.2011.03.025

    Article  MathSciNet  MATH  Google Scholar 

  21. Oßwald, K., Siegmund, A., Birken, P., Hannemann, V., Meister, A.: L\(^2\)Roe: a low dissipation version of Roe’s approximate Riemann solver for low Mach numbers. Int. J. Numer. Methods Fluids 81, 71–86 (2016). https://doi.org/10.1002/fld.4175

    Article  Google Scholar 

  22. Barsukow, W., Edelmann, P., Klingenberg, C., Miczek, F., Röpke, F.: A numerical scheme for the compressible low-Mach number regime of ideal fluid dynamics. SIAM J. Sci. Comput. 72, 623–646 (2017). https://doi.org/10.1007/s10915-017-0372-4

    Article  MathSciNet  MATH  Google Scholar 

  23. Knoll, D.A., Keyes, D.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193, 357–397 (2004). https://doi.org/10.1016/j.jcp.2003.08.010

    Article  MathSciNet  MATH  Google Scholar 

  24. Park, H., Nourgaliev, R., Martineau, R., Knoll, D.: On physics-based preconditioning of the Navier–Stokes equations. J. Comput. Phys. 228, 9131–9146 (2009). https://doi.org/10.1016/j.jcp.2009.09.015

    Article  MathSciNet  MATH  Google Scholar 

  25. Nourgaliev, R., Park, H.K., Mousseau, V.A.: Recovery discontinuous Galerkin Jacobian-free Newton–Krylov method for multiphysics problems. In: Hafez, M., Oshima, K., Kwak, D. (eds.) Computational Fluid Dynamics Review, pp. 71–90. World Scientific, Singapore (2010). https://doi.org/10.1142/9789814313377_0004

    Google Scholar 

  26. Weston, B., Nourgaliev, R., Delplanque, J.P., Barker, A.: Preconditioning of a Newton–Krylov solver for all-speed melt pool flow physics. J. Comput. Phys. (2018) (under review)

  27. Barth, T., Jesperson, P.: The design and application of upwind schemes on unstructured meshes. 27th Aerospace Sciences Meeting, Reno, NV, USA, AIAA Paper 1989-366 (1989). https://doi.org/10.2514/6.1989-366

  28. Nichols, A., et al.: ALE3D Web page. https://wci.llnl.gov/simulation/computer-codes/ale3d (2013)

  29. Nichols, A., et al.: ALE3D users manual, an arbitrary Lagrangian/Eulerian 2D and 3D code system. Technical Report LLNL-SM-650174—Version 4.22, Lawrence Livermore National Laboratory (2014). https://doi.org/10.2172/1361589

  30. Landau, L., Lifschitz, E.: Hydrodynamics, Theoretical Physics, vol. VI, 4th edn. Nauka, Moscow (1988)

    Google Scholar 

  31. Cooper, J.R., Dooley, R.B.: Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. Technical Report, The International Association for the Properties of Water and Steam, Lucerne, Switzerland (2007)

  32. Luo, H., Luo, L., Nourgaliev, R., Mousseau, V.: A reconstructed discontinuous Galerkin method for the compressible Euler equations on arbitrary grids. 19th AIAA Computational Fluid Dynamics Conference, San Antonio, TX, USA, AIAA Paper 2009-3788 (2009). https://doi.org/10.2514/6.2009-3788

  33. Luo, H., Luo, L., Nourgaliev, R., Mousseau, V.: A reconstructed discontinuous Galerkin method for the compressible Navier–Stokes equations on arbitrary grids. J. Comput. Phys. 229, 6961–6978 (2010). https://doi.org/10.1016/j.jcp.2010.05.033

    Article  MathSciNet  MATH  Google Scholar 

  34. Luo, H., Luo, L., Nourgaliev, R., Mousseau, V.A.: A reconstructed discontinuous Galerkin method for the compressible Navier–Stokes equations on arbitrary grids. 47th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2010-364 (2010). https://doi.org/10.2514/6.2010-364

  35. Luo, H., Luo, L., Nourgaliev, R., Mousseau, V.A.: A parallel reconstructed discontinuous Galerkin method for compressible flows on arbitrary grids. 47th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2010-0366 (2010). https://doi.org/10.2514/6.2010-366

  36. Luo, H., Luo, L., Nourgaliev, R., Cai, C.: A parallel, reconstructed discontinuous Galerkin method for the compressible flows on arbitrary grids. Commun. Comput. Phys. 9(2), 363–389 (2011). https://doi.org/10.4208/cicp.070210.020610a

    Article  MathSciNet  MATH  Google Scholar 

  37. Luo, H., Luo, L., Nourgaliev, R.: A reconstructed discontinuous Galerkin method for the Euler equations on arbitrary grids. Commun. Comput. Phys. 12(5), 1495–1519 (2012). https://doi.org/10.4208/cicp.250911.030212a

    Article  MathSciNet  MATH  Google Scholar 

  38. Luo, H., Xia, Y., Li, S., Nourgaliev, R., Cai, C.: A Hermite WENO reconstruction-based discontinuous Galerkin method for the Euler equations on tetrahedral grids. J. Comput. Phys. 231, 5489–5503 (2012). https://doi.org/10.1016/j.jcp.2012.05.011

    Article  MathSciNet  MATH  Google Scholar 

  39. Luo, H., Xia, Y., Spiegel, S., Nourgaliev, R., Jiang, Z.: A reconstructed discontinuous Galerkin method based on a hierarchical WENO reconstruction for compressible flows on tetrahedral grids. J. Comput. Phys. 236, 477–492 (2013). https://doi.org/10.1016/j.jcp.2012.11.026

    Article  MathSciNet  MATH  Google Scholar 

  40. Xia, Y., Luo, H., Frisbey, M., Nourgaliev, R.: A set of parallel, implicit methods for reconstructed discontinuous Galerkin method for compressible flows on 3D hybrid grids. Comput. Fluids 98, 134–151 (2014). https://doi.org/10.1016/j.compfluid.2014.01.023

    Article  MathSciNet  MATH  Google Scholar 

  41. Xia, Y., Luo, H., Nourgaliev, R.: An implicit Hermite WENO reconstruction-based discontinuous Galerkin on tetrahedral grids. Comput. Fluids 96, 406–421 (2014). https://doi.org/10.1016/j.compfluid.2014.02.027

    Article  MathSciNet  MATH  Google Scholar 

  42. Nourgaliev, R., Luo, H., Weston, B., Anderson, A., Schofield, S., Dunn, T., Delplanque, J.P.: Fully-implicit orthogonal reconstructed discontinuous Galerkin for fluid dynamics with phase change. J. Comput. Phys. 305, 964–1006 (2016). https://doi.org/10.1016/j.jcp.2015.11.004

    Article  MathSciNet  MATH  Google Scholar 

  43. van Leer, B., Nomura, S.: Discontinuous Galerkin for diffusion. 17th AIAA Computational Fluid Dynamics Conference, Toronto, ON, Canada, AIAA Paper 2005-5108 (2005). https://doi.org/10.2514/6.2005-5108

  44. Nourgaliev, R., Theofanous, T., Park, H., Mousseau, V., Knoll, D.: Direct numerical simulation of interfacial flows: Implicit sharp-interface method (I-SIM). 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, AIAA Paper 2008-1453 (2008). https://doi.org/10.2514/6.2008-1453

  45. Dumbser, M., Balsara, D., Toro, E., Munz, C.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 8209–8253 (2008). https://doi.org/10.1016/j.jcp.2008.05.025

    Article  MathSciNet  MATH  Google Scholar 

  46. Dumbser, M., Zanotti, O.: Very high order \(P_{n}P_{m}\) schemes on unstructured meshes for the resistive relativistic MHD equations. J. Comput. Phys. 228, 6991–7006 (2009). https://doi.org/10.1016/j.jcp.2009.06.009

    Article  MathSciNet  MATH  Google Scholar 

  47. Dumbser, M.: Arbitrary high order \(P_{n}P_{m}\) schemes on unstructured meshes for the compressible Navier–Stokes equations. Comput. Fluids 39, 60–76 (2010). https://doi.org/10.1016/j.compfluid.2009.07.003

    Article  MathSciNet  MATH  Google Scholar 

  48. Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C., Rupp, K., Smith, B., Zhang, H.: PETSc users manual. Technical Report ANL-95/11—Revision 3.5, Mathematics and Computer Science Division, Argonne National Laboratory (2014). https://doi.org/10.2172/1178109

  49. Dennis Jr., J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs (1983). https://doi.org/10.1137/1.9781611971200

    MATH  Google Scholar 

  50. Saad, Y., Schultz, M.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986). https://doi.org/10.1137/0907058

    Article  MathSciNet  MATH  Google Scholar 

  51. Eisenstat, S., Walker, H.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Stat. Comput. 17, 16–32 (1996). https://doi.org/10.1137/0917003

    Article  MathSciNet  MATH  Google Scholar 

  52. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003). https://doi.org/10.1137/1.9780898718003

    Book  MATH  Google Scholar 

  53. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968). https://doi.org/10.1090/S0025-5718-1968-0242392-2

    Article  MathSciNet  MATH  Google Scholar 

  54. Kuzmin, D.: Hierarchical slope limiting in explicit and implicit discontinuous Galerkin methods. J. Comput. Phys. 257, 1140–1162 (2014). https://doi.org/10.1016/j.jcp.2013.04.032

    Article  MathSciNet  MATH  Google Scholar 

  55. Venkatakrishnan, V.: On the accuracy of limiters and convergence to steady state solutions. AIAA 31st Aerospace Sciences Meeting, Reno, NV, USA, AIAA Paper 1993-880 (1993). https://doi.org/10.2514/6.1993-880

  56. Zhang, F., Liu, J., Chen, B.: Modified multi-dimensional limiting process with enhanced shock stability on unstructured grids. Comput. Fluids 161, 171–188 (2018). https://doi.org/10.1016/j.compfluid.2017.11.019

    Article  MathSciNet  MATH  Google Scholar 

  57. Armaly, B., Durst, F., Pereira, C., Schönung, B.: Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127, 473–496 (1983). https://doi.org/10.1017/S0022112083002839

    Article  Google Scholar 

  58. Kondoh, T., Nagano, Y., Tsuji, T.: Computational study of laminar heat transfer downstream of a backward-facing step. Int. J. Heat Mass Transf. 36(3), 577–591 (1993). https://doi.org/10.1016/0017-9310(93)80033-Q

    Article  MATH  Google Scholar 

  59. Thangam, S., Knight, D.: Effect of step height on the separated flow past to backward facing step. Phys. Fluids A 1, 604–606 (1989). https://doi.org/10.1063/1.857430

    Article  Google Scholar 

  60. Valencia, A., Hinojosa, L.: Numerical solutions of pulsating flow and heat transfer characteristics in a channel with backward-facing step. Heat Mass Transf. 32, 143–148 (1997). https://doi.org/10.1007/s002310050104

    Article  Google Scholar 

  61. Nourgaliev, R., Dinh, T., Theofanous, T.: A pseudocompressibility method for the numerical simulation of incompressible multifluid flows. Int. J. Multiph. Flow 30, 901–937 (2004). https://doi.org/10.1016/j.ijmultiphaseflow.2004.03.010

    Article  MATH  Google Scholar 

  62. Nourgaliev, R., Dinh, T., Theofanous, T., Joseph, D.: The Lattice Boltzmann Equation method: theoretical interpretation, numerics and implications. Int. J. Multiph. Flow 29, 117–169 (2003). https://doi.org/10.1016/S0301-9322(02)00108-8

    Article  MATH  Google Scholar 

  63. Weston, B.: On the preconditioning of a Newton–Krylov solver for a high-order reconstructed discontinuous Galerkin discretization of all-speed compressible flow with phase change for application to laser-based additive manufacturing. PhD Dissertation, University of California, Davis, Mechanical & Aerospace Engineering, Davis, CA, USA (2016). https://doi.org/10.2172/1361587

  64. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press, Basel (1997)

    Chapter  Google Scholar 

  65. Turkel, E.: Review of preconditioning techniques for fluid dynamics. Appl. Numer. Math. 12, 257–284 (1993). https://doi.org/10.1016/0168-9274(93)90122-8

    Article  MathSciNet  MATH  Google Scholar 

  66. Khairallah, S., Anderson, A.: Mesoscopic simulation model of selective laser melting of stainless steel powder. J. Mater. Process. Technol. 214, 2627–2636 (2014). https://doi.org/10.1016/j.jmatprotec.2014.06.001

    Article  Google Scholar 

  67. Voller, V., Prakash, C.: A fixed grid numerical modelling methodology for convection–diffusion mushy region phase-change problems. Int. J. Heat Mass Transf. 30(8), 1709–1719 (1987). https://doi.org/10.1016/0017-9310(87)90317-6

    Article  Google Scholar 

  68. Ehlen, G., Ludwig, A., Sahm, P.: Simulation of time-dependent pool shape during laser spot welding: Transient effects. Metall. Mater. Trans. A 34A, 2948–2961 (2003). https://doi.org/10.1007/s11661-003-0194-x

    Google Scholar 

  69. Kidess, A., Kenjeres, S., Kleijn, C.: The influence of surfactants on thermocapillary flow instabilities in low Prandtl melting pools. Phys. Fluids 28, 062106 (2016). https://doi.org/10.1063/1.4953797

    Article  Google Scholar 

  70. Kidess, A., Kenjeres, S., Righolt, B., Kleijn, C.: Marangoni driven turbulence in high energy surface melting processes. Int. J. Therm. Sci. 104, 412–422 (2016). https://doi.org/10.1016/j.ijthermalsci.2016.01.015

    Article  Google Scholar 

  71. Sahoo, P., DebRoy, T., McNallan, M.: Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy. Metall. Trans. B 19B, 483–491 (1988). https://doi.org/10.1007/BF02657748

    Article  Google Scholar 

  72. Wang, S., Johnsen, E.: High-order schemes for the Euler equations in cylindrical/spherical coordinates (2017). arXiv:1701.04834

  73. Emery, A.: An evaluation of several differencing methods for inviscid fluid flow problems. J. Comput. Phys. 2, 306–331 (1968). https://doi.org/10.1016/0021-9991(68)90060-0

    Article  MathSciNet  MATH  Google Scholar 

  74. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984). https://doi.org/10.1016/0021-9991(84)90142-6

    Article  MathSciNet  MATH  Google Scholar 

  75. Cooper, J.R., Dooley, R.B.: Release on the IAPWS formulation 2008 for the viscosity of ordinary water substance. Technical Report, The International Association for the Properties of Water and Steam, Berlin, Germany (2008)

  76. Daucik, K., Dooley, R.B.: Release on the IAPWS formulation 2011 for the thermal conductivity of ordinary water substance. Technical Report, The International Association for the Properties of Water and Steam, Plzen, Czech Republic (2011)

Download references

Acknowledgements

This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 17-ERD-076, and DOE NE Integrated University Program Graduate Fellowship. Information management release number LLNL-JRNL-745590.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nourgaliev.

Additional information

Communicated by C.-H. Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: IAPWS-IF97

Appendix: IAPWS-IF97

To represent water in a supercritical thermodynamic state, we use the “International Association for the Properties of Water and Steam, Industrial Formulation 1997” (IAPWS-IF97) [31]. Above the fluid’s critical point, i.e.,

$$\begin{aligned} \left[ \begin{array}{cll} P &{}\ge &{} P_{_\mathrm{c}}=22.064~\mathrm{MPa} \\ T &{}\ge &{} T_{_\mathrm{c}}=647.096~\mathrm{K} \\ &{}&{}\rho _{_{_\mathrm{c}}}=322~\mathrm{\frac{kg}{m^3}} \end{array} \right] , \end{aligned}$$
(60)

the pressure can be represented as a function of density and temperature, as

$$\begin{aligned} \tilde{P} \left( \hat{\rho }, \tilde{T} \right)= & {} \frac{\rho _{_{_{\mathrm{c}}}} T_{_{\mathrm{c}}} R}{\bar{P}} \delta ^{^2} \phi _{_{\delta }}-\bar{P}_{_{\mathrm{R}}}, \end{aligned}$$
(61)

where \(R=461.526\)\(\mathrm{\frac{J}{kg~K}}\) is the specific gas constant, while dimensionless density (\(\delta \)) and inverse of temperature (\(\theta \)) are defined as:

$$\begin{aligned} \delta \left( \hat{\rho }\right) = \frac{\hat{\rho }}{\hat{ \rho }_{_{_{\mathrm{c}}}}} \text{ and } \theta \left( \tilde{T} \right) =\frac{\hat{T}_{_{\mathrm{c}}}}{\tilde{T}+\hat{T}_{_R}}. \end{aligned}$$
(62)

The dimensionless specific internal energy (\(\tilde{{\mathfrak {u}}}\)), specific isobaric heat capacity (\(\hat{C}_p\)), speed of sound (\(\hat{c}_s\)), and isobaric compressibility (\(\hat{\beta }\)) can be written as:

$$\begin{aligned} \begin{aligned}&\tilde{{\mathfrak {u}}} = \frac{T_{_c} R}{\bar{{\mathfrak {u}}}} \phi _{_{\theta }}- \hat{{\mathfrak {u}}}_{_R},\\&\hat{C}_p = \left( \frac{\delta \phi _{_{\delta }} \left( 1-\theta \frac{\phi _{_{\delta \theta }}}{\phi _{_{\delta }}}\right) ^2}{2+ \delta \frac{\phi _{_{\delta \delta }}}{\phi _{_{\delta }}}}-\theta ^2 \phi _{_{\theta \theta }} \right) \frac{R}{\bar{C}_{_p}},\\&\hat{c}_s = \left( 2 \phi _{_{\delta }}+ \delta \left[ \phi _{_{\delta \delta }}- \frac{\left( \phi _{_{\delta }} - \theta \phi _{_{\delta \theta }} \right) ^2 }{\theta ^2 \phi _{_{\theta \theta }}} \right] \right) \frac{\delta }{\theta } \frac{T_{_{\mathrm{c}}} R}{ \bar{v}^2},\\&\hat{\beta } =-\frac{\theta \phi _{_{\delta }}}{\left( 2 \phi _{_{\delta }}+\delta \phi _{_{\delta \delta }}\right) \hat{T}_{_{\mathrm{c}}}}, \end{aligned} \end{aligned}$$
(63)

where \(\phi \) is the dimensionless Helmholtz free energy:

$$\begin{aligned} \phi \left( \delta , \theta \right) = a_{_{(1)}} \ln \delta + \sum \limits _{i=2}^{40} a_{_{(i)}} \delta ^{^{b_{_{(i)}}}} \theta ^{^{c_{_{(i)}}}}, \end{aligned}$$
(64)

while \(\phi _{_{\delta }}\), \(\phi _{_{\theta }}\), \(\phi _{_{\delta \delta }}\), \(\phi _{_{\delta \theta }}\), and \(\phi _{_{\theta \theta }}\) are its first and second derivatives relative to \(\delta \) and \(\theta \). The coefficients \(a_{_{(n)}}\) and exponents \(b_{_{(n)}}\) and \(c_{_{(n)}}\) are given in [31].

Dynamic viscosity and thermal conductivity are nonlinear functions of temperature and density and defined as

$$\begin{aligned} \begin{aligned}&\tilde{\mu } \left( \hat{\rho }, \tilde{T}\right) = \frac{\mu _{_\mathrm{dg}} \left( \tilde{T}\right) \times \mu _{_\mathrm{fd}}\left( \hat{\rho }, \tilde{T}\right) \times \mu _{_\mathrm{ce}} }{\bar{\mu } \bar{\mathrm{Re}}},\\&\tilde{\kappa } \left( \hat{\rho }, \tilde{T}\right) = \frac{\kappa _{_\mathrm{dg}} \left( \tilde{T}\right) \times \kappa _{_\mathrm{fd}}\left( \hat{\rho }, \tilde{T}\right) + \kappa _{_\mathrm{ce}} }{\bar{\kappa } \bar{\mathrm{Re}} \bar{\mathrm{Pr}} }. \end{aligned} \end{aligned}$$
(65)

Viscosities and thermal conductivities in the dilute-gas limit (\(\mu _{_\mathrm{dg}}\) and \(\kappa _{_\mathrm{dg}}\)), and contributions due to finite density (\(\mu _{_\mathrm{fd}}\) and \(\kappa _{_\mathrm{fd}}\)) are described in [75, 76]. In the present study, we will ignore critical enhancement factors, \(\mu _{_\mathrm{ce}}=1\) and \(\kappa _{_\mathrm{ce}}=0\), as these are relatively unimportant in the range of thermodynamic states of interest.

Special care must be taken to properly code (63)–(65), as these might become prohibitively expensive to be used in implicit solvers. We have optimized all these computations to be compatible with discontinuous Galerkin-based residual evaluations (Sect. 3.1). As described in Sect. 3.1, our nonlinear solver is formulated in terms of DG degrees of freedom for pressure (\(\tilde{P}\)), velocity (\(\hat{{\mathbf{v }}}\)), and temperature (\(\tilde{T}\)). This would require the application of a Newton solver to first evaluate \(\hat{\rho }\left( \tilde{P}, \tilde{T}\right) \), for (61), before evaluating the rest of the thermodynamic variables using analytical (63). We used quadruple precision (16-bit) for (61)–(65), as this improves the conditioning and overall convergence of the Newton–Krylov algorithm. The performance of our nonlinear solver using this optimized equation of state is comparable (only two or three times more expensive) to the performance of the solver employed with simpler analytical forms of equation of state (e.g., Sect. 2.3.1).

Finally, we would like to note that the scaling properties \(\bar{\rho }\), \(\bar{\mu }\), \(\bar{\kappa }\), and \(\bar{C}_{_p}\) are chosen as evaluated at the reference state \(\left( P_{_{\mathrm{R}}}, T_{_{\mathrm{R}}}\right) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourgaliev, R., Greene, P., Weston, B. et al. High-order fully implicit solver for all-speed fluid dynamics. Shock Waves 29, 651–689 (2019). https://doi.org/10.1007/s00193-018-0871-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0871-8

Keywords

Navigation