Skip to main content
Log in

Non-contact tensile viscoelastic characterization of microscale biological materials

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Many structures and materials in nature and physiology have important “meso-scale” structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meyers, M.A., McKittrick, J., Chen, P.Y.: Structural biological materials: critical mechanics-materials connections. Science 339, 773–779 (2013)

    Article  Google Scholar 

  2. Chen, J., Wright, K.E., Birch, M.A.: Nanoscale viscoelastic properties and adhesion of polydimethylsiloxane for tissue engineering. Acta Mech. Sin. 30, 2–6 (2013)

    Article  Google Scholar 

  3. Ji, B., Gao, H.: Mechanical properties of nanostructure of biological materials. Mech. Phys. Solids 52, 1963–1990 (2004)

    Article  MATH  Google Scholar 

  4. Lin, S.Z., Li, B., Feng, X.Q.: A dynamic cellular vertex model of growing epithelial tissues. Acta Mech. Sin. 33, 250–259 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hollister, S.J.: Porous scaffold design for tissue engineering. Nat. Mater. 4, 518–524 (2006)

    Article  Google Scholar 

  6. Li, Y., Huang, G., Gao, B., et al.: Magnetically actuated cell-laden microscale hydrogels for probing strain-induced cell responses in three dimensions. NPG Asia Mater. 8, e238 (2016)

    Article  Google Scholar 

  7. Reznikov, N., Shahar, R., Weiner, S.: Bone hierarchical structure in three dimensions. Acta Biomater. 10, 3815–3826 (2014)

    Article  Google Scholar 

  8. Alexander, B., Daulton, T.L., Genin, G.M., et al.: The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure. J. R. Soc. Interface 9, 1774–1786 (2012)

    Article  Google Scholar 

  9. Screen, H.R.C., Leem, D.A., Baderm, D.L., et al.: An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc. IME H J. Eng. Med. 218, 109–119 (2004)

    Article  Google Scholar 

  10. Svensson, R.B., Hansen, P., Hassenkam, T., et al.: Mechanical properties of human patellar tendon at the hierarchical levels of tendon and fibril. J. Appl. Physiol. 112, 419–426 (2012)

    Article  Google Scholar 

  11. Long, R., Hui, C.Y.: Crack buckling in soft gels under compression. Acta Mech. Sin. 28, 1098–1105 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Stammen, J.A., Williams, S., Ku, D.N., et al.: Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22, 799–806 (2001)

    Article  Google Scholar 

  13. Galford, J.E., McElhaney, J.H.: A viscoelastic study of scalp, brain, and dura. J. Biomech. 3, 211–221 (1970)

    Article  Google Scholar 

  14. Zhang, T., Yuk, H., Lin, S., et al.: Tough and tunable adhesion of hydrogels: experiments and models. Acta Mech. Sin. 3, 1–12 (2017)

    Google Scholar 

  15. Chaudhuri, O., Gu, L., Klumpers, D., et al.: Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326 (2016)

    Article  Google Scholar 

  16. Chaudhuri, O., Gu, L., Darnell, M., et al.: Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6365 (2015)

    Article  Google Scholar 

  17. Henderson, E., Haydon, P.G., Sakaguchi, D.S.: Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 257, 1944–1947 (1992)

    Article  Google Scholar 

  18. Radmacher, M., Tillmann, R.W., Fritz, M., et al.: From molecules to cells: imaging soft samples with the atomic force microscope. Science 257, 1900–1906 (1992)

    Article  Google Scholar 

  19. Yang, H.: Atomic Force Microscopy (AFM), Principles, Modes of Operation and Limitations. NOVA, New York (2014)

    Google Scholar 

  20. Hochmuth, R.M.: Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000)

    Article  Google Scholar 

  21. Hogan, B., Babataheri, A., Hwang, Y., et al.: Characterizing cell adhesion by using micropipette aspiration. Biophys. J. 109, 209–219 (2015)

    Article  Google Scholar 

  22. Dowling, N.E.: Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  23. Drury, J.L., Dennis, R.G., Mooney, D.J.: The tensile properties of alginate hydrogels. Biomaterials 25, 3187–3199 (2004)

    Article  Google Scholar 

  24. Chasiotis, I., Knauss, W.G.: A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy. Exp. Mech. 42, 51–57 (2002)

    Article  Google Scholar 

  25. Thomson, N.H., Fritz, M., Radmacher, M., et al.: Protein tracking and detection of protein motion using atomic force microscopy. Biophys. J. 70, 2421–2431 (1996)

    Article  Google Scholar 

  26. Schitter, G., Astrom, K.J., DeMartini, B.E., et al.: Design and modeling of a high-speed AFM-scanner. IEEE Trans. Control Syst. Technol. 15, 906–915 (2007)

    Article  Google Scholar 

  27. Kim, J.H., Nizami, A., Hwangbo, Y., et al.: Tensile testing of ultra-thin films on water surface. Nat. Commun. 4, 2520 (2013)

  28. Savin, T., Shyer, A.E., Mahadevan, L.: A method for tensile tests of biological tissues at the mesoscale. J. Appl. Phys. 111, 074704 (2012)

    Article  Google Scholar 

  29. Souza, G.R., Molina, J.R., Raphael, R.M., et al.: Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5, 291–296 (2010)

    Article  Google Scholar 

  30. Sakar, M.S., Eyckmans, J., Pieters, R., et al.: Nat. Commun. 7, 11036 (2016)

    Article  Google Scholar 

  31. Zhao, R., Boudou, T., Wang, W.G., et al.: Decoupling cell and matrix mechanics in engineered microtissues using magnetically actuated microcantilevers. Adv. Mater. 25, 1699–1705 (2013)

    Article  Google Scholar 

  32. Li, Y., Huang, G., Zhang, X., et al.: Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 23, 660–672 (2013)

    Article  Google Scholar 

  33. Li, Y., Poon, C.T., Li, M., et al.: Chinese-noodle-inspired muscle myofiber fabrication. Adv. Funct. Mater. 25, 5999–6008 (2015)

    Article  Google Scholar 

  34. Sun, J.Y., Zhao, X., Illeperuma, W.R.K., et al.: Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012)

    Article  Google Scholar 

  35. Zhao, X.: Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014)

    Article  Google Scholar 

  36. Yue, K., Trujillo-de Santiago, G., Alvarez, M.M., et al.: Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254–271 (2015)

    Article  Google Scholar 

  37. Lai, T.C., Yu, J., Tsai, W.B., et al.: Gelatin methacrylate/carboxybetaine methacrylate hydrogels with tunable crosslinking for controlled drug release. J. Mater. Chem. B 4, 2304–2313 (2016)

  38. Marc, A.M., Po, Y.C., Albert, M.L., et al.: Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This project was partially supported by the National Natural Science Foundation of China (Grants 11532009, 11372243, and 11522219) and the China Postdoctoral Science Foundation (Grant 2016M602810). This project was also supported by the Initiative Postdocs Supporting Program (Grant BX201600121).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian Jian Lu or Feng Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hong, Y., Xu, GK. et al. Non-contact tensile viscoelastic characterization of microscale biological materials. Acta Mech. Sin. 34, 589–599 (2018). https://doi.org/10.1007/s10409-017-0740-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0740-1

Keywords

Navigation