Skip to main content
Log in

Point-of-care ultrasound for children

  • Special Feature: Review Article
  • The role of point-of-care ultrasound (POCUS)
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Most diseases in children are acute, and ultrasonography should be performed in emergency cases rather than X-ray or computed tomography (CT) as children are more sensitive to radiation than adults. Therefore, point-of-care ultrasound (POCUS) is especially useful in children. The target organs of pediatric ultrasound are the same as in adults, and the infant brain can also be observed with ultrasound because the fontanel magna is still open. However, there are a number of points that physicians should be aware of regarding pediatric POCUS. There are some diseases specific to children, which are not found in adults. A higher frequency probe and higher frame rate are needed for children than for adults because of their small body size and rapid heart rate. Infants are not compliant, which necessitates the use of various measures to ensure that they remain still during the imaging examination. Pediatric POCUS is useful not only for diagnosis but also to ensure the safety of medical procedures, which is usually more difficult in children than in adults. POCUS has become a powerful tool for improving the success of such procedures and patient safety. The usefulness of POCUS is clearly evident, and it is being widely adopted across all disciplines in clinical medicine. Nevertheless, adoption of pediatric POCUS has been limited, and therefore educational programs for pediatric POCUS are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Brenner DJ, Hall EJ. Computed tomography-an increasing source radiation exposure. N Eng J Med. 2007;57:2277–84.

    Article  Google Scholar 

  2. Leelakanok N, Trinavarat P, Riccabona M. Common pitfalls and mistakes in pediatric ultrasound. J Med Ultrason. 2019;46:399–412.

    Article  Google Scholar 

  3. Schuchat A, Robinson K, Wenger JD, et al. Bacterial meningitis in the United States in 1995. Active surveillance team. N Engl J Med. 1997;337:970–6.

    Article  CAS  PubMed  Google Scholar 

  4. Hsu HE, Shutt KA, Moore MR, et al. Effect of pneumococcal conjugate vaccine on pneumococcal meningits. N Engl J Med. 2009;360:244–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ichihashi K, Yano S, Kuramatsu T, et al. Brain ultrasonographic findings in complications of bacterial meningitis. No To Hattatsu. 1987;19:379–86.

    CAS  PubMed  Google Scholar 

  6. Parri N, Grosby B, Mills L, et al. Point-of-care ultrasound for the diagnosis of skull fractures in children younger than two years of age. J Pediatr. 2018;196:230–6.

    Article  PubMed  Google Scholar 

  7. Dehbozorgi A, Mousavi-Roknabad RS, Hosseini-Marvast SR, et al. Diagnosing skull fracture in children with closed head injury using point-of care ultrasound vs. computed tomography scan. Eur J Pediatr. 2021;180:477–84.

    Article  PubMed  Google Scholar 

  8. Eckert K, Ackermann O, Jansen N, et al. Accuracy of the sonographic fat pad sign for primary screening pf pediatric elbow fractures: a preliminary study. J Med Ultrason. 2014;41:473–80.

    Article  Google Scholar 

  9. Eckert K, Ackermann O, Schweiger B, et al. Ultrasound evaluation of elbow fractures in children. J Med Ultrason. 2013;40:443–51.

    Article  Google Scholar 

  10. Tamada I, Mori T, Inoue N, et al. An algorithmic approach using ultrasonography in the diagnosis of pediatric nasal bone fracture. J Craniofac Surg. 2017;28:84–7.

    Article  PubMed  Google Scholar 

  11. Pershad J, Myers S, Plouman C, et al. Bedside limited echocardiography by the emergency physician is accurate during evaluation of the critically ill patient. Pediatrics. 2004;11:e667–71.

    Article  Google Scholar 

  12. Singh Y. Echocardiographic evaluation of hemodynamics in neonates and children. Front Pediatr. 2017;5:201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Musolino AM, Buonsenso D, Massolo AC, et al. Point of care ultrasound in the paediatric acute care setting: getting to the ‘heart’ of respiratory distress. J Paediatr Child Health. 2021;57:318–22.

    Article  PubMed  Google Scholar 

  14. Burkett DA, Patel SS, Mertens L, et al. Relationship between left ventricular geometry and invasive hemodynamics in pediatric pulmonary hypertension. Circ Cardiovasc Imaging. 2020;13:e009825.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Abraham S, Weismann CG. Left ventricular end-systolic eccentricity index for assessment of pulmonary hypertension in infants. Echocardiography. 2016;33:910–5.

    Article  PubMed  Google Scholar 

  16. Averin K, Michelfelder E, Sticka J, et al. Changes in ventricular geometry predict severity of right ventricular hypertension. Pediatr Cardiol. 2015;37:575–81.

    Article  PubMed  Google Scholar 

  17. Vieira RL, Hsu D, Nagler J, et al. Pediatric emergency medicine fellow training in ultrasound: consensus educational guidelines. Acad Emerg Med. 2013;20:300–6.

    Article  PubMed  Google Scholar 

  18. Shefrin AE, Warkentine F, Constantine E, et al. Consensus core point-of-care ultrasound applications for pediatric emergency medicine training. Aem Educ Train. 2019;3:251–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Singh Y, Tissot C, Fraga MV, et al. International evidence-based guidelines on point of care ultrasound (POCUS) for critically ill neonates and children issued by the POCUS working group of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Crit Care. 2020;24:65.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Simpson A, Sahn DJ, Valdes-Cruz LM, et al. Color Doppler flow mapping in patients with coarctation of the aorta: new observations and improved evaluation with color flow diameter and proximal acceleration as predictors of severity. Circulation. 1988;77:736–44.

    Article  CAS  PubMed  Google Scholar 

  21. Satomi G, Takao A. Systematic diagnostic method of two-dimensional echocardiography in congenital heart disease. Heart Vessels. 1985;1:101–13.

    Article  CAS  PubMed  Google Scholar 

  22. Levine AC, Shah SP, Umulisa I, et al. Ultrasound assessment of severe dehydration in children with diarrhea and vomiting. Acad Emerg Med. 2010;17:1035–41.

    Article  PubMed  Google Scholar 

  23. Amrousy DE, Gamal R, Elrifaey S, et al. Non-invasive assessment of significant dehydration in infants using the inferior vena cava to aortic ratio: is it useful? J Pediatr Gastroenterol Nutr. 2018;66:882–6.

    Article  PubMed  Google Scholar 

  24. Chen L, Hsiao A, Langham M, et al. Use of bedside ultrasound to assess degree of dehydration in children with gastroenteritis. Acad Emerg Med. 2010;17:1042–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang Z, Xu X, Ye S, et al. Ultrasonographic measurement of the respiratory variation in the inferior vena cava diameter is predictive of fluid responsiveness in critically ill patients: systemic review and meta-analysis. Ultrasound Med Biol. 2014;40:845–53.

    Article  PubMed  Google Scholar 

  26. Sonoo T, Nakamura K, Ando T, et al. Prospective analysis of cardiac collapsibility of inferior vena cava using ultrasonography. J Crit Care. 2015;30:945–8.

    Article  PubMed  Google Scholar 

  27. Lichtenstein DA, Mauriat P. Lung ultrasound in the critically ill neonate. Curr Pediatr Rev. 2012;8:217–23.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Escourrou G, De Luca D. Lung ultrasound decreased radiation exposure in preterm infants in a neonatal intensive care unit. Acta Paediatr. 2016;105:e237–9.

    Article  PubMed  Google Scholar 

  29. Liu J, Liu F, Liu Y, et al. Lung ultrasonography for the diagnosis of severe neonatal pneumonia. Chest. 2014;146:383–8.

    Article  PubMed  Google Scholar 

  30. Iorio G, Gapasso M, Prisco S, et al. Lung ultrasound findings undetectable by chest radiography in children with community-acquired pneumonia. Ultrasound Med Biol. 2018;44:1687–93.

    Article  PubMed  Google Scholar 

  31. Najgrodzka P, Buda N, Zamojska A, et al. Lung ultrasonography in the diagnosis of pneumonia in children-a meta-analysis and a review of pediatric lung imaging. Ultrasound Q. 2019;35:157–63.

    Article  PubMed  Google Scholar 

  32. Orso D, Ban A, Guglielmo N. Lung ultrasound in diagnosing pneumonia in childhood: a systematic review and meta-analysis. J Ultrasound. 2018;21:183–95.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pereda MA, Chavez MA, Hooper-Miele CC, et al. Lung ultrasound for the diagnosis of pneumonia in children: a meta-analysis. Pediatrics. 2015;135:714–22.

    Article  PubMed  Google Scholar 

  34. Liu J, Chi JH, Ren XL, et al. Lung ultrasonography to diagnose pneumothorax of the newborn. Am J Emerg Med. 2017;35:1298–302.

    Article  PubMed  Google Scholar 

  35. Deng BY, Li N, Wu WS, et al. Use of neonatal lung ultrasound for the early detection of pneumothorax. Am J Perinatol. 2020;37:907–13.

    Article  PubMed  Google Scholar 

  36. Vasquez DG, Berg GM, Srour SG, et al. Lung ultrasound for detecting pneumothorax injured children: preliminary experience at a community-based level II pediatric trauma center. Pediatric Radiol. 2020;50:329–37.

    Article  Google Scholar 

  37. Sivitz AB, Tejani C, Cohen SG. Evaluation of hypertrophic pyloric stenosis by pediatric emergency physician sonography. Acad Emerg Med. 2013;20:646–51.

    Article  PubMed  Google Scholar 

  38. Dorinizi N, Pagenhardt J, Sharon M, et al. Immediate emergency department diagnosis of pyloric stenosis with point-of-care ultrasound. Clin Pract Cases Emerg Med. 2017;1:395–8.

    Article  Google Scholar 

  39. Rohrschneider WK, Mittnacht H, Darge K, et al. Pyloric muscle in asymptomatic infants: sonographic evaluation and discrimination from idiopathic hypertrophic pyloric stenosis. Pediatr radiol. 1998;28:429–34.

    Article  CAS  PubMed  Google Scholar 

  40. Reed AA, Michael K. Hypertrophic pyloric stenosis. J Diagn Med Sonography. 2010;26:157–60.

    Article  Google Scholar 

  41. Eshed I, Gorenstein A, Serour F, et al. Intussusception in children: can we rely on screening sonography performed by junior residents? Pediatr Radiol. 2004;34:134–7.

    Article  PubMed  Google Scholar 

  42. Riera A, Hsjao AL, Langhan ML, et al. Diagnosis of intussusception by physician novice sonographers in the emergency department. Am Emerg Med. 2012;60:264–8.

    Article  Google Scholar 

  43. Riebel TW, Nasir R, Weber K. US-guided hydrostatic reduction of intussusception in children. Radiology. 1993;188:513–6.

    Article  CAS  PubMed  Google Scholar 

  44. Rosen MP, Ding A, Blake MA, et al. ACR appropriate criteria right lower quadrant pain-suspected appendicitis. J Am Coll Radiol. 2011;8:749–55.

    Article  PubMed  Google Scholar 

  45. Klein MD. Clinical approach to a child with abdominal pain who might have appendicitis. Pediatr Radiol. 2007;37:11–4.

    Article  PubMed  Google Scholar 

  46. Hosokawa T, Tanami Y, Sato Y, et al. Comparison of imaging findings between acute focal bacterial nephritis (acute lobar nephronia) and acute pyelonephritis: a preliminary evaluation of the sufficiency of ultrasound for the diagnosis of acute focal bacterial nephritis. Emerg Radiol. 2020;27:405–12.

    Article  PubMed  Google Scholar 

  47. Bansal AG, Oudsema R, Masseaux JA, et al. US of pediatric superficial masses of the head and neck. Radiographics. 2018;38:1239–63.

    Article  PubMed  Google Scholar 

  48. Nozaki H, Harasawa A, Hara H, et al. Ultrasonographic features of recurrent parotitis in childhood. Pediatr Radiol. 1994;24:98–100.

    Article  CAS  PubMed  Google Scholar 

  49. Leerdam CM, Martin HC, Isaacs D. Recurrent parotitis of childhood. J Poediatr Child Health. 2005;41:631–4.

    Article  CAS  Google Scholar 

  50. Weber FC, Greene AK, Adams DM, et al. Role of imaging in the diagnosis of parotid infantile hemangiomas. Int Pediatr Otorhinolaryngol. 2017;102:61–6.

    Article  Google Scholar 

  51. Mulliken JB, Enjolras O. Congenital hemangiomas and infantile hemangioma: missing links. J Am Dermatol. 2004;50:875–82.

    Article  Google Scholar 

  52. Gedikbasi A, Oztarhan K, Aslan G, et al. Multidisciplinary approach in cystic hygroma: prenatal diagnosis, outcome, and postnatal follow up. Pediatr Int. 2009;51:670–7.

    Article  PubMed  Google Scholar 

  53. Shimizu J, Taga T, Kishimoto T, et al. Airway obstruction caused by rapid enlargement of cervical lymphangioma in a five-month-old boy. Clin Case Rep. 2016;4:896–8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jo MS, Jeong JY. A rare cause of dyspnea: cervicothoracic cystic lymphangioma. J Craniofac Surg. 2017;28:706–7.

    Article  Google Scholar 

  55. Nozaki T, Morita Y, Hasegawa D, et al. Cervical ultrasound and computed tomography of Kawasaki disease; comparison with lymphadenitis. Pediatr Int. 2016;58:1146–52.

    Article  PubMed  Google Scholar 

  56. Tashiro N, Matsubara T, Uchida M, et al. Ultrasonographic evaluation of cervical lymph nodes in Kawasaki Disease. Pediatrics. 2002;109:E77–87.

    Article  PubMed  Google Scholar 

  57. de Souza TH, Brandao MB, Nadal JAH, et al. Ultrasound guidance for pediatric central venous catheterization: a meta-analysis. Pediatrics. 2018;142:e20181719.

    Article  PubMed  Google Scholar 

  58. Byon HJ, Lee GW, Lee JH, et al. Comparison between ultrasound-guided supraclavicular and infraclavicular approaches for subclavian venous catheterization in children-a randomized trial. Br J Anoesth. 2013;11:788–92.

    Article  Google Scholar 

  59. Guilbert AS, Xavier L, Ammouche C, et al. Supraclavicular ultrasound-guided catheterization of the subclavian vein in pediatric and neonatal ICUs: a feasibility study. Pediatr Crit Care Med. 2013;14:351–5.

    Article  PubMed  Google Scholar 

  60. Gaspari RJ, Sanserverino A, Glesson T. Abscess incision and drainage with or without ultrasonography: a randomized controlled trial. Ann Emerg Med. 2019;73:1–7.

    Article  PubMed  Google Scholar 

  61. Hoffmann B, Gullett JP, Hill HF, et al. Bedside ultrasound of the neck confirms endotracheal tube position in emergency intubations. Ultrashall Med. 2014;35:451–8.

    Article  CAS  Google Scholar 

  62. Fraga MV, Stoller JZ, Glau CL, et al. Seeing is believing: ultrasound in pediatric procedural performance. Pediatrics. 2019;144:e20191401.

    Article  PubMed  Google Scholar 

  63. Oulego-Erroz I, Gozalez-Cortes R, Garcia-Soler P, RECANVA Collaborative Study, et al. Ultrasound-guided or landmark techniques for central venous catheter placement in critically ill children. Intensive Care Med. 2018;4:61–72.

    Article  Google Scholar 

  64. Zanolla GR, Baldisserotto M, Piva J. How useful is ultrasound guidance for internal jugular venous access in children? J Pediatr Surg. 2018;53:789–93.

    Article  PubMed  Google Scholar 

  65. Verghese ST, McGill WA, Patel RI, et al. Ultrasound-guide internal jugular venous cannulation in infants: a prospective comparison with the traditional palpation method. Anesthesiology. 1999;91:71–7.

    Article  CAS  PubMed  Google Scholar 

  66. Iwashima S, Ishikawa T, Ohzeki T. Ultrasound-guided versus landmark-guided femoral vein access in pediatric cardiac catheterization. Pediatr Cardiol. 2008;29:339–42.

    Article  CAS  PubMed  Google Scholar 

  67. Bruzoni M, Slater BJ, Wall J, et al. A prospective randomized trial of ultrasound- vs lamdmark-guided central venous access in the pediatric population. J Am Coll Surg. 2013;216:939–43.

    Article  PubMed  Google Scholar 

  68. Katheria AC, Fleming SE, Kim JH. A randomized controlled trial of ultrasound-guided peripherally inserted central catheters compared with standard radiograph in neonates. J Perinatol. 2013;33:791–4.

    Article  CAS  PubMed  Google Scholar 

  69. Ishii S, Shime N, Shibasaki M, et al. Ultrasound-guided radial artery catheterization in infants and small children. Pediatr Crit Care Med. 2013;14:471–3.

    Article  PubMed  Google Scholar 

  70. Marin JR, Alpern ER, Panebianco NL, et al. Assessment of a training curriculum for emergency ultrasound for pediatric soft tissue infections. Acad Emerg Med. 2011;18:174–82.

    Article  PubMed  Google Scholar 

  71. Marciniak B, Fayoux P, Hebrard A, et al. Airway management in children: ultrasonography assessment of tracheal intubation in real time? Anesth Analg. 2009;108:461–5.

    Article  PubMed  Google Scholar 

  72. Tessaro MD, Salant EP, Arroyo AC, et al. Tracheal rapid ultrasound saline test for confirming correct endotracheal tube depth in children. Resuscitation. 2015;89:8–12.

    Article  PubMed  Google Scholar 

  73. Constantine E, Levine M, Arroyo A, et al. Core content for pediatric emergency medicine ultrasound fellowship training: a modified Delphi consensus study. AEM Educ Train. 2019;4:130–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ko Ichihashi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical statements

As this is a review article based on the published literature, no ethics approval was required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ichihashi, K., Nonaka, K. Point-of-care ultrasound for children. J Med Ultrasonics 49, 639–654 (2022). https://doi.org/10.1007/s10396-021-01169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10396-021-01169-0

Keywords

Navigation