Skip to main content

Advertisement

Log in

Host Responses to Pathogen Priming in a Natural Songbird Host

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Hosts in free-living populations can experience substantial variation in the frequency and dose of pathogen exposure, which can alter disease progression and protection from future exposures. In the house finch–Mycoplasma gallisepticum (MG) system, the pathogen is primarily transmitted via bird feeders, and some birds may be exposed to frequent low doses of MG while foraging. Here we experimentally determined how low dose, repeated exposures of house finches to MG influence host responses and protection from secondary high-dose challenge. MG-naive house finches were given priming exposures that varied in dose and total number. After quantifying host responses to priming exposures, all birds were given a secondary high-dose challenge to assess immunological protection. Dose, but not the number of exposures, significantly predicted both infection and disease severity following priming exposure. Furthermore, individuals given higher priming doses showed stronger protection upon secondary, high-dose challenge. However, even single low-dose exposures to MG, a proxy for what some birds likely experience in the wild while feeding, provided significant protection against a high-dose challenge. Our results suggest that bird feeders, which serve as sources of infection in the wild, may in some cases act as “immunizers,” with important consequences for disease dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adelman JS, Carter AW, Hopkins WA, Hawley DM (2013a) Deposition of pathogenic Mycoplasma gallisepticum onto bird feeders: host pathology is more important than temperature-driven increases in food intake. Biology Letters 9:20130594. doi:10.1098/rsbl.2013.0594

  • Adelman JS, Kirkpatrick L, Grodio JL, Hawley DM (2013b) House finch populations differ in early inflammatory signaling and pathogen tolerance at the peak of mycoplasma gallisepticum infection. The American Naturalist 181:674–689. doi:10.1086/670024

  • Adelman JS, Moyers SC, Farine DR, Hawley DM (2015) Feeder use predicts both acquisition and transmission of a contagious pathogen in a North American songbird. Proceedings of the Royal Society B: Biological Sciences 282:20151429. doi: 10.1098/rspb.2015.1429

    Article  PubMed  PubMed Central  Google Scholar 

  • Aiello CM, Nussear KE, Esque TC, Emblidge PG, Sah P, Bansal S, Hudson PJ (2016) Host contact and shedding patterns clarify variation in pathogen exposure and transmission in threatened tortoise Gopherus agassizii : implications for disease modelling and management. Journal of Animal Ecology 85:829–842. doi: 10.1111/1365-2656.12511

    Article  PubMed  Google Scholar 

  • Altizer S, Davis AK, Cook KC, Cherry JJ (2004a) Age, sex, and season affect the risk of mycoplasmal conjunctivitis in a southeastern house finch population. Canadian Journal of Zoology 82:755–763. doi: 10.1139/z04-050

    Article  Google Scholar 

  • Altizer S, Hochachka WM, Dhondt AA (2004b) Seasonal dynamics of mycoplasmal conjunctivitis in eastern North American house finches. Journal of Animal Ecology 73:309–322. doi: 10.1111/j.0021-8790.2004.00807.x

    Article  Google Scholar 

  • Banyard AC, Healy DM, Brookes SM, Voller K, Hicks DJ, Núñez A, Fooks AR (2014) Lyssavirus infection: “Low dose, multiple exposure” in the mouse model. Virus Research 181:35–42. doi: 10.1016/j.virusres.2013.12.029

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Package lme4. Journal of Statistical Software 67:1–91 (DOI: http://lme4.r-forge.r-project.org)

  • Ben‐Ami F, Ebert D, Regoes RR (2010) Pathogen Dose Infectivity Curves as a Method to Analyze the Distribution of Host Susceptibility: A Quantitative Assessment of Maternal Effects after Food Stress and Pathogen Exposure. The American Naturalist 175:106–115. doi: 10.1086/648672

    Article  PubMed  Google Scholar 

  • Best A, Tidbury H, White A, Boots M (2012) The evolutionary dynamics of within-generation immune priming in invertebrate hosts. Journal of The Royal Society Interface 10:20120887–20120887. doi: 10.1098/rsif.2012.0887

    Article  Google Scholar 

  • Bonneaud C, Balenger SL, Russell AF, Zhang J, Hill GE, Edwards S V (2011) Rapid evolution of disease resistance is accompanied by functional changes in gene expression in a wild bird. Proceedings of the National Academy of Sciences 108:7866–7871. doi: 10.1073/pnas.1018580108

    Article  CAS  Google Scholar 

  • Bonneaud C, Balenger SL, Zhang J, Edwards S V, Hill GE (2012) Innate immunity and the evolution of resistance to an emerging infectious disease in a wild bird. Molecular ecology 21:2628–39. doi: 10.1111/j.1365-294X.2012.05551.x

    Article  CAS  PubMed  Google Scholar 

  • Bouwman KM, Hawley DM (2010) Sickness behaviour acting as an evolutionary trap? Male house finches preferentially feed near diseased conspecifics. Biology Letters 6:462–465. doi: 10.1098/rsbl.2010.0020

    Article  PubMed  PubMed Central  Google Scholar 

  • Burnham KKP, Anderson DRD (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed., New York: Springer

    Google Scholar 

  • Cellier-Holzem E, Esparza-Salas R, Garnier S, Sorci G (2010) Effect of repeated exposure to Plasmodium relictum (lineage SGS1) on infection dynamics in domestic canaries. International Journal for Parasitology 40:1447–1453. doi: 10.1016/j.ijpara.2010.04.014

    Article  PubMed  Google Scholar 

  • Dhondt AA, Altizer S, Cooch EG, Davis AK, Dobson A, Driscoll MJL, Hartup BK, Hawley DM, Hochachka WM, Hosseini PR, Jennelle CS, Kollias G V, Ley DH, Swarthout ECH, Sydenstricker K V (2005) Dynamics of a novel pathogen in an avian host: Mycoplasmal conjunctivitis in house finches. Acta Tropica 94:77–93. doi: 10.1016/j.actatropica.2005.01.009

    Article  PubMed  Google Scholar 

  • Dhondt AA, Dhondt KV, Hawley DM, Jennelle CS (2007a) Experimental evidence for transmission of Mycoplasma gallisepticum in house finches by fomites. Avian Pathology 36:205–208. doi:10.1080/03079450701286277

  • Dhondt AA, Dhondt K V, McCleery B V (2008) Comparative infectiousness of three passerine bird species after experimental inoculation with Mycoplasma gallisepticum. Avian Pathology 37:635–640. doi: 10.1080/03079450802499100

    Article  PubMed  Google Scholar 

  • Dhondt KV, Dhondt AA, Ley DH (2007b) Effects of route of inoculation on Mycoplasma gallisepticum infection in captive house finches. Avian Pathology 36:475–479. doi:10.1080/03079450701642016

  • Ferguson-Noel NM, Laibinis VA, Kleven SH (2012) Evaluation of Mycoplasma gallisepticum K-Strain as a Live Vaccine in Chickens. Avian Diseases 56:44–50. doi: 10.1637/9833-061411-Reg.1

    Article  CAS  PubMed  Google Scholar 

  • Gandon S, Mackinnon MJ, Nee S, Read AF (2001) Imperfect vaccines and the evolution of pathogen virulence. Nature 414:751–756. doi: 10.1038/414751a

    Article  CAS  PubMed  Google Scholar 

  • Gervasi SS, Civitello DJ, Kilvitis HJ, Martin LB (2015) The context of host competence: a role for plasticity in host–parasite dynamics. Trends in Parasitology 31:419–425. doi: 10.1016/j.pt.2015.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomes MGM, Lipsitch M, Wargo AR, Kurath G, Rebelo C, Medley GF, Coutinho A (2014) A Missing Dimension in Measures of Vaccination Impacts. PLoS Pathogens 10:e1003849. doi: 10.1371/journal.ppat.1003849

    Article  PubMed  PubMed Central  Google Scholar 

  • Grenfell BT, Wilson K, Isham VS, Boyd HEG, Dietz K (1995) Modelling patterns of parasite aggregation in natural populations: trichostrongylid nematode–ruminant interactions as a case study. Parasitology 111:S135. doi: 10.1017/S0031182000075867

    Article  PubMed  Google Scholar 

  • Grodio JL, Dhondt K V, O’Connell PH, Schat KA (2008) Detection and quantification of Mycoplasma gallisepticum genome load in conjunctival samples of experimentally infected house finches (Carpodacus mexicanus) using real-time polymerase chain reaction. Avian Pathology 37:385–391. doi: 10.1080/03079450802216629

    Article  CAS  PubMed  Google Scholar 

  • Grodio JL, Hawley DM, Osnas EE, Ley DH, Dhondt K V, Dhondt AA, Schat KA (2012) Pathogenicity and immunogenicity of three Mycoplasma gallisepticum isolates in house finches (Carpodacus mexicanus). Veterinary Microbiology 155:53–61. doi: 10.1016/j.vetmic.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  • Grodio JL, Ley DH, Schat KA, Hawley DM (2013) Chronic Mycoplasma conjunctivitis in house finches: Host antibody response and M. gallisepticum VlhA expression. Veterinary Immunology and Immunopathology 154:129–137. doi: 10.1016/j.vetimm.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  • Havelaar AH, Garssen J, Takumi K, Koedam MA, Dufrenne JB, van Leusden FM, de la Fonteyne L, Bousema JT, Vos JG (2001) A rat model for dose-response relationships of Salmonella Enteritidis infection. Journal of Applied Microbiology 91:442–452. doi: 10.1046/j.1365-2672.2001.01399.x

    Article  CAS  PubMed  Google Scholar 

  • Hawley DM, Grodio J, Frasca S, Kirkpatrick L, Ley DH (2011) Experimental infection of domestic canaries (Serinus canaria domestica) with Mycoplasma gallisepticum : a new model system for a wildlife disease. Avian Pathology 40:321–327. doi: 10.1080/03079457.2011.571660

    Article  PubMed  Google Scholar 

  • Hawley DM, Osnas EE, Dobson AP, Hochachka WM, Ley DH, Dhondt AA (2013) Parallel patterns of increased virulence in a recently emerged wildlife pathogen. PLoS biology 11:e1001570. doi: 10.1371/journal.pbio.1001570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes GJ, Kitching RP, Woolhouse MEJ (2002) Dose-dependent Responses of Sheep Inoculated Intranasally with a Type O Foot-and-mouth Disease Virus. Journal of Comparative Pathology 127:22–29. doi: 10.1053/jcpa.2002.0560

    Article  CAS  PubMed  Google Scholar 

  • Javed MA, Frasca S, Rood D, Cecchini K, Gladd M, Geary SJ, Silbart LK (2005) Correlates of Immune Protection in Chickens Vaccinated with Mycoplasma gallisepticum Strain GT5 following Challenge with Pathogenic M. gallisepticum Strain Rlow. Infection and Immunity 73:5410–5419. doi: 10.1128/IAI.73.9.5410-5419.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson PTJ, Hoverman JT (2014) Heterogeneous hosts: how variation in host size, behaviour and immunity affects parasite aggregation. The Journal of animal ecology 1–10 (DOI: 10.1111/1365-2656.12215)

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993. doi: 10.1038/nature06536

    Article  CAS  PubMed  Google Scholar 

  • Kollias G V., Sydenstricker K V, Kollias HW, Ley DH, Hosseini PR, Connolly V, Dhondt AA (2004) Experimental infection of house finches with Mycoplasma gallisepticum. Journal of Wildlife Diseases 40:79–86. doi: 10.7589/0090-3558-40.1.79

    Article  PubMed  Google Scholar 

  • Ley DH, Berkhoff JE, McLaren JM (1996) Mycoplasma gallisepticum Isolated from House Finches (Carpodacus mexicanus) with Conjunctivitis. Avian Diseases 40:480. doi: 10.2307/1592250

    Article  CAS  PubMed  Google Scholar 

  • Lillehoj HS (1988) Influence of inoculation dose, inoculation schedule, chicken age, and host genetics on disease susceptibility and development of resistance to Eimeria tenella infection. Avian diseases 32:437–44.

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Kahan SM, Jia Y, Karst SM (2009) Primary high-dose murine norovirus 1 infection fails to protect from secondary challenge with homologous virus. Journal of virology 83:6963–8. doi: 10.1128/JVI.00284-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438:355–359. doi: 10.1038/nature04153

    Article  CAS  PubMed  Google Scholar 

  • May M, Szczepanek SM, Frasca S, Gates AE, Demcovitz DL, Moneypenny CG, Brown DR, Geary SJ (2012) Effects of sialidase knockout and complementation on virulence of Mycoplasma gallisepticum. Veterinary microbiology 157:91–5. doi: 10.1016/j.vetmic.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  • May RM, Anderson RM (1987) Transmission dynamics of HIV infection. Nature 326:137–142. doi: 10.1038/326137a0

    Article  CAS  PubMed  Google Scholar 

  • McElroy PD, Beier JC, Oster CN, Onyango FK, Oloo AJ, Lin X, Beadle C, Hoffman SL (1997) Dose- and time-dependent relations between infective Anopheles inoculation and outcomes of Plasmodium falciparum parasitemia among children in western Kenya. American journal of epidemiology 145:945–56.

    Article  CAS  PubMed  Google Scholar 

  • McKinstry KK, Strutt TM, Buck A, Curtis JD, Dibble JP, Huston G, Tighe M, Hamada H, Sell S, Dutton RW, Swain SL (2009) IL-10 Deficiency Unleashes an Influenza-Specific Th17 Response and Enhances Survival against High-Dose Challenge. The Journal of Immunology 182:7353–7363. doi: 10.4049/jimmunol.0900657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McTaggart SJ, Wilson PJ, Little TJ (2012) Daphnia magna shows reduced infection upon secondary exposure to a pathogen. Biology Letters 8:972–975. doi: 10.1098/rsbl.2012.0581

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy K, Weaver C (2017) Janeway’s Immunobiology, 9th ed., Garland Science/Taylor & Francis Group, LLC

  • Pessoa D, Souto-Maior C, Gjini E, Lopes JS, Ceña B, Codeço CT, Gomes MGM (2014) Unveiling Time in Dose-Response Models to Infer Host Susceptibility to Pathogens. PLoS Computational Biology 10:e1003773. doi: 10.1371/journal.pcbi.1003773

    Article  PubMed  PubMed Central  Google Scholar 

  • Pope EC, Powell A, Roberts EC, Shields RJ, Wardle R, Rowley AF (2011) Enhanced Cellular Immunity in Shrimp (Litopenaeus vannamei) after “Vaccination.” PLoS ONE 6:e20960. doi: 10.1371/journal.pone.0020960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core team (2015) R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/. 55:275–286.

  • Read AF, Baigent SJ, Powers C, Kgosana LB, Blackwell L, Smith LP, Kennedy DA, Walkden-Brown SW, Nair VK (2015) Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens. PLOS Biology 13:e1002198. doi: 10.1371/journal.pbio.1002198

    Article  PubMed  PubMed Central  Google Scholar 

  • Regoes RR (2012) The Role of Exposure History on HIV Acquisition: Insights from Repeated Low-dose Challenge Studies. PLoS Computational Biology 8:e1002767. doi: 10.1371/journal.pcbi.1002767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regoes RR, Longini IM, Feinberg MB, Staprans SI (2005) Preclinical Assessment of HIV Vaccines and Microbicides by Repeated Low-Dose Virus Challenges. PLoS Medicine 2:e249. doi: 10.1371/journal.pmed.0020249

    Article  PubMed  PubMed Central  Google Scholar 

  • Song Y, Wang X, Zhang H, Tang X, Li M, Yao J, Jin X, Ertl HCJ, Zhou D (2015) Repeated Low-Dose Influenza Virus Infection Causes Severe Disease in Mice: a Model for Vaccine Evaluation. Journal of Virology 89:7841–7851. doi: 10.1128/JVI.00976-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spekreijse D, Bouma A, Stegeman JA, Koch G, de Jong MCM (2011) The effect of inoculation dose of a highly pathogenic avian influenza virus strain H5N1 on the infectiousness of chickens. Veterinary Microbiology 147:59–66. doi: 10.1016/j.vetmic.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  • Stranford SA, Skurnick J, Louria D, Osmond D, Chang S-Y, Sninsky J, Ferrari G, Weinhold K, Lindquist C, Levy JA (1999) Lack of infection in HIV-exposed individuals is associated with a strong CD8 + cell noncytotoxic anti-HIV response. Proceedings of the National Academy of Sciences 96:1030–1035. doi: 10.1073/pnas.96.3.1030

    Article  CAS  Google Scholar 

  • Sydenstricker K V, Dhondt AA, Hawley DM, Jennelle CS, Kollias HW, Kollias G V (2006) Characterization of Experimental Mycoplasma gallisepticum Infection in Captive House Finch Flocks. Avian Diseases 50:39–44. doi: 10.1637/7403-062805R.1

    Article  PubMed  Google Scholar 

  • Sydenstricker K V, Dhondt AA, Ley DH, Kollias G V (2005) Re-exposure of captive house finches that recovered from Mycoplasma gallisepticum infection. Journal of Wildlife Diseases 41:326–333. doi: 10.7589/0090-3558-41.2.326

    Article  PubMed  Google Scholar 

  • Tate AT (2017) A general model for the influence of immune priming on disease prevalence. Oikos 126:350–360. doi: 10.1111/oik.03274

    Article  Google Scholar 

  • Thomason CA, Leon A, Kirkpatrick LT, Belden LK, Hawley DM (2017) Eye of the Finch: characterization of the ocular microbiome of house finches in relation to mycoplasmal conjunctivitis. Environmental Microbiology. doi: 10.1111/1462-2920.13625

    PubMed  Google Scholar 

  • Tidbury HJ, Best A, Boots M (2012) The epidemiological consequences of immune priming. Proceedings Biological sciences/The Royal Society 279:4505–12. doi: 10.1098/rspb.2012.1841

    Article  Google Scholar 

  • Tidbury HJ, Pedersen AB, Boots M (2011) Within and transgenerational immune priming in an insect to a DNA virus. Proceedings Biological sciences/The Royal Society 278:871–6. doi: 10.1098/rspb.2010.1517

    Article  Google Scholar 

  • Timms R, Colegrave N, Chan BH, Read AF (2001) The effect of parasite dose on disease severity in the rodent malaria Plasmodium chabaudi. Parasitology 123:1–11. doi: 10.1017/S0031182001008083

    Article  CAS  PubMed  Google Scholar 

  • Vandenberg JD, Ramos M, Altre JA (1998) Dose-Response and Age- and Temperature-Related Susceptibility of the Diamondback Moth (Lepidoptera: Plutellidae) to Two Isolates of Beauveria bassiana (Hyphomycetes: Moniliaceae). Environmental Entomology 27:1017–1021. doi: 10.1093/ee/27.4.1017

    Article  Google Scholar 

  • Woolhouse ME, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, Hagan P, Hii JL, Ndhlovu PD, Quinnell RJ, Watts CH, Chandiwana SK, Anderson RM (1997) Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proceedings of the National Academy of Sciences of the United States of America 94:338–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Prince JE, Brayton CF, Shah C, Zeve D, Gregory SH, Smith CW, Ballantyne CM (2003) Host Resistance of CD18 Knockout Mice against Systemic Infection with Listeria monocytogenes. Infection and Immunity 71:5986–5993. doi: 10.1128/IAI.71.10.5986-5993.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yates A, Antia R, Regoes RR (2006) How do pathogen evolution and host heterogeneity interact in disease emergence? Proceedings of the Royal Society B: Biological Sciences 273:3075–3083. doi: 10.1098/rspb.2006.3681

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by NIH grant 5R01GM105245 as part of the joint NIH-NSF-USDA Ecology and Evolution of Infectious Diseases program. Additional fellowship support for A. Leon provided by the Virginia Tech IMSD program funded through NIH-NIGMS grant R25GM072767-09. We thank members of the House Finch Project Group for useful discussion. We especially thank Laila Kirkpatrick for running all qPCR assays, David Ley for providing inoculum, and André Dhondt, Wesley Hochachka, James Adelman, Sahnzi Moyers, Skylar Hopkins, Arietta Fleming-Davies, Courtney Thomason, Joel McGlothlin, Rami Dalloul and Liwu Li for valuable feedback. We thank Dan Cristol and Trevor Sleight for their assistance in trapping house finches in Williamsburg, VA. We thank Catherine Beach, Johanel Caceres, Dorian Jackson, David Vasquez, and Courtney Youngbar for assistance in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel E. Leon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leon, A.E., Hawley, D.M. Host Responses to Pathogen Priming in a Natural Songbird Host. EcoHealth 14, 793–804 (2017). https://doi.org/10.1007/s10393-017-1261-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-017-1261-x

Keywords

Navigation