Skip to main content

Advertisement

Log in

Evaluation of the lamina cribrosa in different stages of diabetic retinopathy

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the relationship of the peripapillary retina nerve fiber layer (RNFL) and lamina cribrosa (LC) with diabetic retinopathy (DR) in type 2 diabetes mellitus (DM) cases.

Study design

Prospective comparative study.

Methods

This study included 50 non-DR (Group 1), 55 non-proliferative diabetic retinopathy (NPDR) (Group 2), 28 DM cases with proliferative diabetic retinopathy (PDR) (Group 3) and 45 healthy volunteers (Group 4). All participants were evaluated with visual acuity, intraocular pressure (IOP) with Goldman applanation tonometry, anterior segment biomicroscopy, 24 − 2 visual field testing, and dilated fundus examination. Retinal nerve fiber layer (RNFL) thickness, lamina cribrosa thickness (LCT) and anterior lamina cribrosa depth (ALCD) were examined by spectral-domain optical coherence tomography (OCT).

Results

There was no difference between the groups in terms of age and gender. Visual acuity (p < 0.001) was significantly different between the groups, while IOP (p = 0.068) was similar. Mean (p = 0.010), superior-temporal (p = 0.024), and superior-nasal (p = 0.011) RNFL thickness decreased significantly in correlation with the stage of DR. LCT decreased significantly as the stage of DR progressed in both vertical and horizontal radial OCT scans (p < 0.001). ALCD was not different between groups (p = 0.954 for horizontal scan, p = 0.867 for vertical scan).

Conclusion

Peripapillary RNFL and LCT significantly decreases as the DR stage progresses. The biomechanical effects of the LC may also be responsible for diabetes-induced neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gaasterland D, Tanishima T, Kuwabara T. Axoplasmic flow during chronic experimental glaucoma.1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping. Invest Ophthalmol Vis Sci. 1978;17:838–46.

    CAS  PubMed  Google Scholar 

  2. Takihara Y, Inatani M, Eto K, Inoue T, Kreymerman A, Miyake S, et al. In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS. Proc Natl Acad Sci. 2015;112:10515–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Minckler DS, Bunt AH, Johanson GW. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci. 1977;16:426–41.

    CAS  PubMed  Google Scholar 

  4. Lasta M, Pemp B, Schmid D, Boltz A, Kaya S, Palkovits S, et al. Neurovascular dysfunction precedes neural dysfunction in the retina of patients with type 1 diabetes. Invest Ophthalmol Vis Sci. 2013;54:842–7.

    Article  PubMed  Google Scholar 

  5. Tavares Ferreira J, Alves M, Dias-Santos A, Costa L, Santos BO, Cunha JP, et al. Retinal neurodegeneration in Diabetic Patients without Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2016;57:6455–60.

    Article  PubMed  Google Scholar 

  6. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and eff ect of insulin. J Clin Invest. 1998;102:783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carrasco E, Hernandez C, Miralles A, Huguet P, Farres J, Simo R. Lower somatostatin expression is an early event in diabeticretinopathy and is associated with retinal neurodegeneration. Diabetes Care. 2007;30:2902–8.

    Article  CAS  PubMed  Google Scholar 

  8. Carrasco E, Hernandez C, de Torres I, Farres J, Simo R. Lowered cortistatin expression is an early event in the human diabetic retina and is associated with apoptosis and glial activation. Mol Vis. 2008;14:1496–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Garcia-Ramirez M, Hernandez C, Villarroel M, Canals F, Alonso MA, Fortuny R, et al. Interphotoreceptor retinoid-binding protein (IRBP) is downregulated at early stages of diabetic retinopathy. Diabetologia. 2009;52:2633–41.

    Article  CAS  PubMed  Google Scholar 

  10. Abu-El-Asrar AM, Dralands L, Missotten L, Al-Jadaan IA, Geboes K. Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci. 2004;45:2760–6.

    Article  PubMed  Google Scholar 

  11. Zhang L, Ino-ue M, Dong K, Yamamoto M. Retrograde axonal transport impairment of large- and medium-sized retinal ganglion cells in diabetic rat. Curr Eye Res. 2000;20:131–6.

    Article  CAS  PubMed  Google Scholar 

  12. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2004;27:5–10.

    Article  Google Scholar 

  13. Flaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, et al. Diabetic retinopathy preferred practice pattern. Ophthalmology. 2020;127:66–145.

    Article  Google Scholar 

  14. Satue M, Cipres M, Melchor I, Gil-Arribas L, Vilades E, Garcia-Martin E. Ability of swept source OCT technology to detect neurodegeneration in patients with type 2 diabetes mellitus without diabetic retinopathy. Jpn J Ophthalmol. 2020;64:367–77.

    Article  CAS  PubMed  Google Scholar 

  15. Araszkiewicz A, Zozulinska-Ziolkiewicz D. Retinal neurodegeneration in the course of diabetes-pathogenesis and clinical perspective. Curr Neuropharmacol. 2016;14:805–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Simo R, Hernandez C, European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab. 2014;25:23–33.

    Article  CAS  PubMed  Google Scholar 

  17. De Clerck EEB, Schouten JSAG, Berendschot TTJM, Kessels AGH, Nuijts RMMA, Beckers HJM, et al. New ophthalmologic imaging techniques for detection and monitoring of neurodegenerative changes in diabetes: a systematic review. Lancet Diabetes Endocrinol. 2015;3:653–63.

    Article  PubMed  Google Scholar 

  18. Carpineto P, Toto L, Aloia R, Ciciarelli V, Borrelli E, Vitacolonna E, et al. Neuroretinal alterations in the early stages of diabetic retinopathy in patients with type 2 diabetes mellitus. Eye (Lond). 2016;30:673–9.

    Article  CAS  PubMed  Google Scholar 

  19. Qian X, Lin L, Zong Y, Yuan Y, Dong Y, Fu Y, et al. Shifts in renin-angiotensin system components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa region of streptozotocin-induced diabetic mice. Graefes Arch Clin Exp Ophthalmol. 2018;256:525–34.

    Article  CAS  PubMed  Google Scholar 

  20. Amano S, Kaji Y, Oshika T, Oka T, Machinami R, Nagai R, et al. Advanced glycation end products in human optic nerve head. Br J Ophthalmol. 2001;85:52–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bruel A, Oxlund H. Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis. 1996;127:155–65.

    Article  CAS  PubMed  Google Scholar 

  22. Vlassara H, Bucala R, Striker L. Pathogenic effects of advanced glycation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest. 1994;70:138–51.

    CAS  PubMed  Google Scholar 

  23. Akkaya S, Küçük B, Karaköse Doğan H, Can E. Evaluation of the lamina cribrosa in patients with diabetes mellitus using enhanced depth imaging spectral-domain optical coherence tomography. Diab Vasc Dis Res. 2018;15:442–8.

    Article  PubMed  Google Scholar 

  24. Yokota S, Takihara Y, Takamura Y, Inatani M. Circumpapillary retinal nerve fiber layer thickness, anterior lamina cribrosa depth, and lamina cribrosa thickness in neovascular glaucoma secondary to proliferative diabetic retinopathy: a cross-sectional study. BMC Ophthalmol. 2017;17:57.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vujosevic S, Martini F, Cavarzeran F, Pilotto E, Midena E. Macular and peripapillary choroidal thickness in diabetic patients. Retina. 2012;32:1781–90.

    Article  PubMed  Google Scholar 

  26. Bonovas S, Peponis V, Filloussi K. Diabetes mellitus as a risk factor for primary open-angle glaucoma: a meta-analysis. Diabet Med. 2004;21:609–14.

    Article  CAS  PubMed  Google Scholar 

  27. Kanamori A, Nakamura M, Mukuno H, Maeda H, Negi A. Diabetes has additive effect on neural apoptosis in rat retina with chronically elevated intraocular pressure. Curr Eye Res. 2004;28:47–54.

    Article  PubMed  Google Scholar 

  28. Wong VH, Bui BV, Vingrys AJ. Clinical and experimental links between diabetes and glaucoma. Clin Exp Optom. 2011;94:4–23.

    Article  PubMed  Google Scholar 

  29. Li Y, Mitchell W, Elze T, Zebardast N. Association between Diabetes, Diabetic Retinopathy, and Glaucoma. Curr Diab Rep. 2021;21:38.

    Article  CAS  PubMed  Google Scholar 

  30. Fernandez DC, Pasquini LA, Dorfman D, Aldana Marcos HJ, Rosenstein RE. Ischemic conditioning protects from axoglial alterations of the optic pathway induced by experimental diabetes in rats. PLoS ONE. 2012;7:e51966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Quigley HA. Can diabetes be good for glaucoma? Why can’t we believe our own eyes (or data)? Arch Ophthalmol. 2009;127:227–9.

    PubMed  Google Scholar 

Download references

Acknowledgements

Funding/ support: The authors did not receive any financial support from any public or private source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semra Koca.

Ethics declarations

Conflict of Interest

S. Koca, None; E. Vural, None; E. Sırakaya, None; D. Kılıc, None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Semra Koca

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koca, S., Vural, E., Sırakaya, E. et al. Evaluation of the lamina cribrosa in different stages of diabetic retinopathy. Jpn J Ophthalmol 67, 280–286 (2023). https://doi.org/10.1007/s10384-023-00987-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-023-00987-8

Keywords

Navigation