Skip to main content

Advertisement

Log in

Association between central serous chorioretinopathy susceptibility genes and choroidal parameters

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the association between central serous chorioretinopathy (CSC) susceptibility genes and choroidal parameters in a large Japanese cohort.

Study design

Retrospective cohort study.

Methods

Of the 9850 individuals in the Nagahama study whose second visit was between 2013 and 2016, those with optical coherence tomography (OCT) images with enhanced depth imaging (EDI), axial length, and genome-wide single nucleotide polymorphism (SNP) genotyping data were included. We calculated subfoveal choroidal thickness (SFCT), choroidal vascularity index (CVI), normalized choroidal intensity (NCI), and vertical asymmetry of choroidal thickness. Genome-wide quantitative trait locus (QTL) analyses were performed for each parameter. We screened for four CSC susceptibility SNPs: CFH rs800292, TNFRSF10A rs13278062, GATA5 rs6061548, and VIPR2 rs3793217. Whenever an SNP was not included in the genotyping data after quality control, its proxy SNP was selected.

Results

In total, 4586 participants were evaluated. CFH rs800292 was significantly associated with SFCT (P < 0.001) and CVI (P < 0.001). VIPR2 rs3793217 was significantly associated with SFCT (P < 0.001) but not with CVI. Whereas, TNFRSF10A rs13254617 and GATA5 rs6061548 were not significantly associated with SFCT or CVI. None of these SNPs was associated with NCIEDI and asymmetry of choroidal thickness.

Conclusion

CFH, VIPR2, TNFRSF10A, and GATA5 showed different association patterns with choroidal parameters. Although the mechanism of CSC pathogenesis by choroidal changes is not fully understood, this finding suggests that each gene may be involved in different mechanisms of CSC development. Our genetic study provides a basis for understanding the role of CSC susceptibility genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miyake M, Tsujikawa A, Yamashiro K, Ooto S, Oishi A, Tamura H, et al. Choroidal neovascularization in eyes with choroidal vascular hyperpermeability. Invest Ophthalmol Vis Sci. 2014;55:3223–30.

    Article  Google Scholar 

  2. Gemenetzi M, De Salvo G, Lotery AJ. Central serous chorioretinopathy: an update on pathogenesis and treatment. Eye. 2010;24:1743–56.

    Article  CAS  Google Scholar 

  3. Kitzmann AS, Pulido JS, Diehl NN, Hodge DO, Burke JP. The incidence of central serous chorioretinopathy in Olmsted County, Minnesota, 1980–2002. Ophthalmology. 2008;115:169–73.

    Article  Google Scholar 

  4. Kido A, Miyake M, Tamura H, Hiragi S, Kimura T, Ohtera S, et al. Incidence of central serous chorioretinopathy (2011-2018): a nationwide population-based cohort study of Japan. Br J Ophthalmol. 2021;bjophthalmol-2021-319403.

  5. Klein ML, Van Buskirk EM, Friedman E, Gragoudas E, Chandra S. Experience with nontreatment of central serous choroidopathy. Arch Ophthalmol. 1974;91:247–50.

    Article  CAS  Google Scholar 

  6. Nicholson B, Noble J, Forooghian F, Meyerle C. Central serous chorioretinopathy: update on pathophysiology and treatment. Surv Ophthalmol. 2013;58:103–26.

    Article  Google Scholar 

  7. Bujarborua D. Long-term follow-up of idiopathic central serous chorioretinopathy without laser. Acta Ophthalmol Scand. 2001;79:417–21.

    Article  CAS  Google Scholar 

  8. Bouzas EA, Karadimas P, Pournaras CJ. Central serous chorioretinopathy and glucocorticoids. Surv Ophthalmol. 2002;47:431–48.

    Article  Google Scholar 

  9. Mrejen S, Balaratnasingam C, Kaden TR, Bottini A, Dansingani K, Bhavsar KV, et al. Long-term visual outcomes and causes of vision loss in chronic central serous chorioretinopathy. Ophthalmology. 2019;126:576–88.

    Article  Google Scholar 

  10. Aisu N, Miyake M, Hosoda Y, Mori Y, Takahashi A, Muraoka Y, et al. Effectiveness of reduced-fluence photodynamic therapy for chronic central serous chorioretinopathy. Ophthalmology Science. 2022;2: 100152.

    Article  Google Scholar 

  11. Pang CE, Freund KB. Pachychoroid neovasculopathy. Retina. 2015;35:1–9.

    Article  CAS  Google Scholar 

  12. Warrow DJ, Hoang QV, Freund KB. Pachychoroid pigment epitheliopathy. Retina. 2013;33:1659–72.

    Article  Google Scholar 

  13. Miyake M, Ooto S, Yamashiro K, Takahashi A, Yoshikawa M, Akagi-Kurashige Y, et al. Pachychoroid neovasculopathy and age-related macular degeneration. Sci Rep. 2015;5:16204.

    Article  CAS  Google Scholar 

  14. Yanagi Y. Pachychoroid disease: a new perspective on exudative maculopathy. Jpn J Ophthalmol. 2020;64:323–37.

    Article  Google Scholar 

  15. Yamashiro K, Hosoda Y, Miyake M, Ooto S, Tsujikawa A. Characteristics of pachychoroid diseases and age-related macular degeneration: multimodal imaging and genetic backgrounds. J Clin Med. 2020;9:2034.

    Article  CAS  Google Scholar 

  16. Hosoda Y, Miyake M, Yamashiro K, Ooto S, Takahashi A, Oishi A, et al. Deep phenotype unsupervised machine learning revealed the significance of pachychoroid features in etiology and visual prognosis of age-related macular degeneration. Sci Rep. 2020;10:18423.

    Article  CAS  Google Scholar 

  17. Cheung CMG, Lee WK, Koizumi H, Dansingani K, Lai TYY, Freund KB. Pachychoroid Dis EYE. 2019;33:14–33.

    Google Scholar 

  18. Yamashiro K, Hosoda Y, Miyake M, Takahashi A, Ooto S, Tsujikawa A. Hypothetical pathogenesis of age-related macular degeneration and pachychoroid diseases derived from their genetic characteristics. Jpn J Ophthalmol. 2020;64:555–67.

    Article  CAS  Google Scholar 

  19. Mori Y, Miyake M, Hosoda Y, Miki A, Takahashi A, Muraoka Y, et al. Genome-wide survival analysis for macular neovascularization development in central serous chorioretinopathy revealed shared genetic susceptibility with polypoidal choroidal vasculopathy. Ophthalmology. 2022;129:1034–42.

    Article  Google Scholar 

  20. Miki A, Kondo N, Yanagisawa S, Bessho H, Honda S, Negi A. Common variants in the complement factor H gene confer genetic susceptibility to central serous chorioretinopathy. Ophthalmology. 2014;121:1067–72.

    Article  Google Scholar 

  21. Hosoda Y, Yoshikawa M, Miyake M, Tabara Y, Ahn J, Woo SJ, et al. CFH and VIPR2 as susceptibility loci in choroidal thickness and pachychoroid disease central serous chorioretinopathy. Proc Natl Acad Sci USA. 2018;115:6261–6.

    Article  CAS  Google Scholar 

  22. Hosoda Y, Miyake M, Schellevis RL, Boon CJF, Hoyng CB, Miki A, et al. Genome-wide association analyses identify two susceptibility loci for pachychoroid disease central serous chorioretinopathy. Commun Biol. 2019;2:468.

    Article  CAS  Google Scholar 

  23. Guyer DR, Yannuzzi LA, Slakter JS, Sorenson JA, Ho A, Orlock D. Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol. 1994;112:1057–62.

    Article  CAS  Google Scholar 

  24. Yannuzzi LA. Central serous chorioretinopathy: a personal perspective. Am. J. Ophthalmol. 2010. p. 361–3.

  25. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146:496–500.

    Article  Google Scholar 

  26. Agrawal R, Salman M, Tan K-A, Karampelas M, Sim DA, Keane PA, et al. Choroidal vascularity index (CVI)–A novel optical coherence tomography parameter for monitoring patients with panuveitis? PLoS ONE. 2016;11: e0146344.

    Article  Google Scholar 

  27. Agrawal R, Gupta P, Tan K-A, Cheung CMG, Wong T-Y, Cheng C-Y. Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study. Sci Rep. 2016;6:21090.

    Article  CAS  Google Scholar 

  28. Balasubramanian S, Lei J, Nittala MG, Velaga SB, Haines J, Pericak-Vance MA, et al. Association of drusen volume with choroidal parameters in nonneovascular age-related macular degeneration. Retina. 2017;37:1880–7.

    Article  Google Scholar 

  29. Velaga SB, Nittala MG, Vupparaboina KK, Jana S, Chhablani J, Haines J, et al. Choroidal vascularity index and choroidal thickness in eyes with reticular pseudodrusen. Retina. 2020;40:612–7.

    Article  Google Scholar 

  30. Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29:1469–73.

    Article  Google Scholar 

  31. Baek J, Lee JH, Jung BJ, Kook L, Lee WK. Morphologic features of large choroidal vessel layer: age-related macular degeneration, polypoidal choroidal vasculopathy, and central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2018;256:2309–17.

    Article  Google Scholar 

  32. Kuroda S, Ikuno Y, Yasuno Y, Nakai K, Usui S, Sawa M, et al. Choroidal thickness in central serous chorioretinopathy. Retina. 2013;33:302–8.

    Article  Google Scholar 

  33. Brandl C, Helbig H, Gamulescu MA. Choroidal thickness measurements during central serous chorioretinopathy treatment. Int Ophthalmol. 2014;34:7–13.

    Article  Google Scholar 

  34. Agrawal R, Chhablani J, Tan K-A, Shah S, Sarvaiya C, Banker A. Choroidal vascularity index in central serous chorioretinopathy. Retina. 2016;36:1646–51.

    Article  Google Scholar 

  35. Chhablani J, Rasheed M, Goud A, Mohamed A, Vupparaboina K. Change in choroidal vascularity in acute central serous chorioretinopathy. Indian J Ophthalmol. 2018;66:530.

    Article  Google Scholar 

  36. Kim R-Y, Chung DH, Kim M, Park Y-H. Use of choroidal vascularity index for choroidal structural evaluation in central serous chorioretinopathy with choroidal neovascularization. Retina. 2020;40:1395–402.

    Article  Google Scholar 

  37. Yang J, Wang E, Yuan M, Chen Y. Three-dimensional choroidal vascularity index in acute central serous chorioretinopathy using swept-source optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2020;258:241–7.

    Article  Google Scholar 

  38. Mori Y, Miyake M, Hosoda Y, Uji A, Nakano E, Takahashi A, et al. Distribution of choroidal thickness and choroidal vessel dilation in healthy Japanese individuals. Ophthalmol Sci. 2021;1: 100033.

    Article  Google Scholar 

  39. Miyake M, Yamashiro K, Tabara Y, Suda K, Morooka S, Nakanishi H, et al. Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nat Commun. 2015;6:6689.

    Article  CAS  Google Scholar 

  40. Nakata I, Yamashiro K, Nakanishi H, Akagi-Kurashige Y, Miyake M, Tsujikawa A, et al. Prevalence and characteristics of age-related macular degeneration in the Japanese population: the Nagahama study. Am J Ophthalmol. 2013;156:1002-9.e2.

    Article  Google Scholar 

  41. K. Setoh and F. Matsuda. (2022). Cohort Profile: The Nagahama Prospective Genome Cohort for Comprehensive Human Bioscience (The Nagahama Study). In: Yano, M., Matsuda, F., Sakuntabhai, A., Hirota, S. (eds) Socio-Life Science and the COVID-19 Outbreak. Economics, Law, and Institutions in Asia Pacific. Springer, Singapore.

  42. Hiroe T, Kishi S. Dilatation of asymmetric vortex vein in central serous chorioretinopathy. Ophthalmol Retina. 2018;2:152–61.

    Article  Google Scholar 

  43. Yamada H, Hangai M, Nakano N, Takayama K, Kimura Y, Miyake M, et al. Asymmetry analysis of macular inner retinal layers for glaucoma diagnosis. Am J Ophthalmol. 2014;158:1318-29.e3.

    Article  Google Scholar 

  44. Delaneau O, Marchini J, 1000 Genomes Project Consortium, 1000 Genomes Project Consortium. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat Commun. 2014;5:3934.

  45. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.

    Article  CAS  Google Scholar 

  46. Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55:997–1004.

    Article  CAS  Google Scholar 

  47. Mori K, Ishikawa K, Fukuda Y, Ji R, Wada I, Kubo Y, et al. TNFRSF10A downregulation induces retinal pigment epithelium degeneration during the pathogenesis of age-related macular degeneration and central serous chorioretinopathy. Hum Mol Genet. 2022;31:2194–206.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Nagahama City Office and the nonprofit organization, Zeroji Club for their help in conducting the Nagahama Study. We would also like to thank Ms. Hatsue Hamanaka for her assistance with genotyping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Miyake.

Ethics declarations

Conflicts of interest

K. Morino, None; M. Miyake, Grants or Contracts (Novartis), Payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing or educational events (Bayer, Kowa, Alcon, HOYA, Novartis, AMO, Santen, Senju, Johnson & Johnson); T. Kamei, None; T. Kawaguchi, None; Y. Mori, Payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing or educational events (Santen); Y. Hosoda, None; A. Uji, Payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing or educational events (Canon, Bayer, Novartis, Santen, Senju, HOYA); K. Yamashiro, Payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing or educational events (Novartis, Bayer, Santen, Alcon, Senju, Kowa, Canon, Chugai); F. Matsuda, None; A. Tsujikawa, Grants or Contracts (Canon, Findex, Santen, Kowa, Pfizer, Senju, Wakamoto, Alcon, Novartis, Otsuka, Bayer, Nitten), Consulting fees (Senju, Bayer, Novartis, HOYA, Ellex, MSD, Allegan, Eisai, Daiich-Sankyo, Chugai, KYOWA HAKKO BIO), Payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing or educational events (Bayer, Senju, Novartis, Santen, Alcon, AbbVie, AMO, Kowa, Canon, Otsuka, Wakamoto, NIDEK).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Masahiro Miyake

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morino, K., Miyake, M., Kamei, T. et al. Association between central serous chorioretinopathy susceptibility genes and choroidal parameters. Jpn J Ophthalmol 66, 504–510 (2022). https://doi.org/10.1007/s10384-022-00945-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-022-00945-w

Keywords

Navigation