Skip to main content

Advertisement

Log in

Pachychoroid disease: a new perspective on exudative maculopathy

  • Forefront Review
  • Organizer: Akitaka Tsujikawa, MD
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Pachychoroid, or the structural and functional abnormalities of the choroid, is one of the most important causes of exudative maculopathies. The purpose of this article is to review the current definitions of pachychoroid and their potential consequences.

Summary of findings

Most publications are from Asian countries. Although no consensus diagnosis has been reached, pachychoroid is defined by thickened choroid and choroidal vascular hyperpermeability, pachyvessels with inner choroidal attenuation; it is closely linked to pachydrusen. Although some studies suggest choroidal congestion may play a role in its pathogenesis, the exact causes of this condition are still unknown. Pachychoroid is associated with exudative maculopathies including central serous chorioretinopathy, pachychoroid neovasculopathy and polypoidal choroidal vasculopathy (PCV). It is widely accepted that macular neovascular membranes may develop secondary to pachychoroid. Recent clinical observations illustrate the importance of pachychoroid in the etiology of macular neovascularization including neovascular age-related macular degeneration (nAMD).

Conclusion

Pachychoroid is an important cause of exudative maculopathies. Both drusen and pachychoroid are increasingly recognized as important causes of macular neovascularization, and eyes formally categorized as typical nAMD or PCV can be further sub-categorized based on the presence or absence of pachychoroid and drusen. There is a need to develop a consensus definition, which will greatly enhance our understanding of pachychoroid and facilitate the development of individual interventions in pachychoroid diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Spaide RF, Hall L, Haas A, Campeas L, Yannuzzi LA, Fisher YL, et al. Indocyanine green videoangiography of older patients with central serous chorioretinopathy. Retina. 1996;16:203–13.

    CAS  PubMed  Google Scholar 

  2. Hayashi K, Hasegawa Y, Tokoro T. Indocyanine green angiography of central serous chorioretinopathy. Int Ophthalmol. 1986;9:37–41.

    CAS  PubMed  Google Scholar 

  3. Guyer DR. Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol. 1994;112:1057.

    CAS  PubMed  Google Scholar 

  4. Sasahara M, Tsujikawa A, Musashi K, Gotoh N, Otani A, Mandai M, et al. Polypoidal choroidal vasculopathy with choroidal vascular hyperpermeability. Am J Ophthalmol. 2006;142:601–7.e1.

    Google Scholar 

  5. Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009;147:811–5.

    PubMed  Google Scholar 

  6. Spaide RF, Koizumi H, Pozonni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146:496–500.

    PubMed  Google Scholar 

  7. Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29:1469–73.

    PubMed  Google Scholar 

  8. Jirarattanasopa P, Ooto S, Nakata I, Tsujikawa A, Yamashiro K, Oishi A, et al. Choroidal thickness, vascular hyperpermeability, and complement factor h in age-related macular degeneration and polypoidal choroidal vasculopathy. Investig Opthalmol Vis Sci. 2012;53:3663.

    CAS  Google Scholar 

  9. Koizumi H, Yamagishi T, Yamazaki T, Kinoshita S. Relationship between clinical characteristics of polypoidal choroidal vasculopathy and choroidal vascular hyperpermeability. Am J Ophthalmol. 2013;155:305–13.e1.

    Google Scholar 

  10. Warrow DJ, Hoang QV, Freund KB. Pachychoroid pigment epitheliopathy. Retina. 2013;33:1659–72.

    PubMed  Google Scholar 

  11. Siedlecki J, Schworm B, Priglinger SG. The pachychoroid disease spectrum—and the need for a uniform classification system. Ophthalmol Retina. 2019;3:1013–5.

    PubMed  Google Scholar 

  12. Iida T, Hagimura N, Takahashi K, Muraoka K. Study of choroidal vascular lesions in bullous retinal detachment by indocyanine green angiography. J Jpn Ophthalmol Soc. 1995;99:945–54 (in Japanese).

    CAS  Google Scholar 

  13. Yanagi Y, Ting DSW, Ng WY, Lee SY, Mathur R, Chan CM, et al. Choroidal vascular hyperpermeability as a predictor of treatment response for polypoidal choroidal vasculopathy. Retina. 2018;38:1509–17.

    PubMed  Google Scholar 

  14. Miyake M, Tsujikawa A, Yamashiro K, Ooto S, Oishi A, Tamura H, et al. Choroidal neovascularization in eyes with choroidal vascular hyperpermeability. Investig Opthalmology Vis Sci. 2014;55:3223.

    Google Scholar 

  15. Fung AT, Yannuzzi LA, Freund K. Type 1 (sub-retinal pigment epithelial) neovascularization in central serous chorioretinopathy masquerading as neovascular age-related macular degeneration. Retina. 2012;32:1829–37.

    PubMed  Google Scholar 

  16. Nomura Y, Takahashi H, Tan X, Obata R, Yanagi Y. Widespread choroidal thickening and abnormal midperipheral fundus autofluorescence characterize exudative age-related macular degeneration with choroidal vascular hyperpermeability. Clin Ophthalmol. 2015;9:297–304.

    PubMed  PubMed Central  Google Scholar 

  17. Pang CE, Freund KB. Pachychoroid neovasculopathy. Retina. 2015;35:1–9.

    CAS  PubMed  Google Scholar 

  18. Chang Y-C, Cheng C-K. Difference between pachychoroid and nonpachychoroid polypoidal choroidal vasculopathy and their response to anti-vascular endothelial growth factor therapy. Retina. 2019. https://doi.org/10.1097/iae.0000000000002583.

    Article  PubMed  Google Scholar 

  19. Miyake M, Ooto S, Yamashiro K, Takahashi A, Yoshikawa M, Akagi-Kurashige Y, et al. Pachychoroid neovasculopathy and age-related macular degeneration. Sci Rep. 2015;5:16204.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakayama M, Keino H, Okada AA, Watanabe T, Taki W, Inoue M, et al. Enhanced depth imaging optical coherence tomography of the choroid in Vogt–Koyanagi–Harada disease. Retina. 2012;32:2061–9.

    PubMed  Google Scholar 

  21. Spaide RF, Goldbaum M, Wong DWK, Tang KC, Iida T. Serous detachment of the retina. Retina. 2003;23:820–46.

    PubMed  Google Scholar 

  22. Lee M, Lee H, Kim HC, Chung H. Changes in stromal and luminal areas of the choroid in pachychoroid diseases: insights into the pathophysiology of pachychoroid diseases. Investig Ophthalmol Vis Sci. 2018;59:4896–908.

    CAS  Google Scholar 

  23. Dansingani KK, Balaratnasingam C, Naysan J, Freund KB. En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina. 2016;36:499–516.

    PubMed  Google Scholar 

  24. Baek J, Lee JH, Jung BJ, Kook L, Lee WK. Morphologic features of large choroidal vessel layer: age-related macular degeneration, polypoidal choroidal vasculopathy, and central serous chorioretinopathy. Graefe’s Arch Clin Exp Ophthalmol. 2018;256:2309–17.

    Google Scholar 

  25. Hiroe T, Kishi S. Dilatation of asymmetric vortex vein in central serous chorioretinopathy. Ophthalmol Retina. 2018;2:152–61.

    PubMed  Google Scholar 

  26. Matsumoto H, Kishi S, Mukai R, Akiyama H. Remodeling of macular vortex veins in pachychoroid neovasculopathy. Sci Rep. 2019;9:14689.

    PubMed  PubMed Central  Google Scholar 

  27. Mori K. Asymmetry of choroidal venous vascular patterns in the human eye. Ophthalmology. 2004;111:507–12.

    PubMed  Google Scholar 

  28. Daizumoto E, Mitamura Y, Sano H, Akaiwa K, Niki M, Yamanaka C, et al. Changes of choroidal structure after intravitreal aflibercept therapy for polypoidal choroidal vasculopathy. Br J Ophthalmol. 2017;101:56–61.

    PubMed  Google Scholar 

  29. Yun C, Huh J, Ahn SM, Lee B, Kim JT, Hwang SY, et al. Choriocapillaris flow features and choroidal vasculature in the fellow eyes of patients with acute central serous chorioretinopathy. Graefe’s Arch Clin Exp Ophthalmol. 2019;257:57–70.

    Google Scholar 

  30. Rochepeau C, Kodjikian L, Garcia M-AA, Mathis T. Optical coherence tomography angiography quantitative assessment of choriocapillaris blood flow in central serous chorioretinopathy. Am J Ophthalmol. 2018;194:26–34.

    PubMed  Google Scholar 

  31. Gal-Or O, Dansingani KK, Sebrow D, Dolz-Marco R, Freund KB. Inner choroidal flow signal attenuation in pachychoroid disease : optical coherence tomography angiography. Retina. 2018;38:1984–92.

    PubMed  Google Scholar 

  32. Sakurada Y, Fragiotta S, Leong BCS, Parikh R, Hussnain SA, Freund KB. Relationship between choroidal vascular hyperpermeability, choriocapillaris flow density, and choroidal thickness in eyes with pachychoroid pigment epitheliopathy. Retina. 2019. https://doi.org/10.1097/iae.0000000000002635.

    Article  PubMed  Google Scholar 

  33. Baek J, Kook L, Lee WK. Choriocapillaris flow impairments in association with pachyvessel in early stages of pachychoroid. Sci Rep. 2019;9:5565.

    PubMed  PubMed Central  Google Scholar 

  34. Demirel S, Değirmenci MFK, Batıoğlu F, Özmert E. Evaluation of the choroidal features in pachychoroid spectrum diseases by optical coherence tomography and optical coherence tomography angiography. Eur J Ophthalmol. 2019. https://doi.org/10.1177/1120672119887095.

    Article  PubMed  Google Scholar 

  35. Nichole J, Mitchell P, Younan C, Burlutsky G, Cheng C, Cheung CMG, et al. Ethnic variation in early age-related macular degeneration lesions between white Australians and Singaporean asians. Investig Ophthalmol Vis Sci. 2014;55:4421–9.

    Google Scholar 

  36. Lee J, Kim M, Lee CS, Kim SS, Koh HJ, Lee SC, et al. Drusen subtypes and choroidal characteristics in asian eyes with typical neovascular age-related macular degeneration. Retina. 2020;40:490–8.

    PubMed  Google Scholar 

  37. Lee J, Byeon SH. Prevalence and clinical characteristics of pachydrusen in polypoidal choroidal vasculopathy: multimodal image study. Retina. 2019;39:670–8.

    PubMed  Google Scholar 

  38. Matsumoto H, Mukai R, Morimoto M, Tokui S, Kishi S, Akiyama H. Clinical characteristics of pachydrusen in central serous chorioretinopathy. Graefe’s Arch Clin Exp Ophthalmol. 2019;257:1127–32.

    CAS  Google Scholar 

  39. Baek J, Lee JH, Chung B, Lee K, Lee WK. Choroidal morphology under pachydrusen. Clin Exp Ophthalmol. 2019;47:498–504.

    PubMed  Google Scholar 

  40. Spaide RF. Disease expression in nonexudative age-related macular degeneration varies with choroidal thickness. Retina. 2018;38:708–16.

    PubMed  Google Scholar 

  41. Cheung CMG, Gan A, Yanagi Y, Wong TY, Spaide R. Association between choroidal thickness and drusen subtypes in age-related macular degeneration. Ophthalmol Retina. 2018;2:1196–205.

    PubMed  Google Scholar 

  42. Singh S, Chakurkar R, Goud A, Rasheed M, Vupparaboina K, Chhablani J. Pachydrusen in polypoidal choroidal vasculopathy in an Indian cohort. Indian J Ophthalmol. 2019;67:1121–6.

    PubMed  PubMed Central  Google Scholar 

  43. Singh SR, Oli A, Mohan S, Goud A, Rasheed MA, Vupparaboina KK, et al. Pachydrusen in Indian population: a hospital-based study. Indian J Ophthalmol. 2019;67:371–5.

    PubMed  PubMed Central  Google Scholar 

  44. Fukuda Y, Sakurada Y, Yoneyama S, Kikushima W, Sugiyama A, Matsubara M, et al. Clinical and genetic characteristics of pachydrusen in patients with exudative age-related macular degeneration. Sci Rep. 2019;9:11906.

    PubMed  PubMed Central  Google Scholar 

  45. Lee J, Choi S, Lee CS, Kim M, Kim SS, Koh HJ, et al. Neovascularization in fellow eye of unilateral neovascular age-related macular degeneration according to different drusen types. Am J Ophthalmol. 2019;208:103–10.

    PubMed  Google Scholar 

  46. Ersoz MG, Arf S, Hocaoglu M, Sayman Muslubas I, Karacorlu M. Indocyanine green angiography of pachychoroid pigment epitheliopathy. Retina. 2018;38:1668–74.

    PubMed  Google Scholar 

  47. Ersoz MG, Karacorlu M, Arf S, Hocaoglu M, Sayman Muslubas I. Pachychoroid pigment epitheliopathy in fellow eyes of patients with unilateral central serous chorioretinopathy. Br J Ophthalmol. 2017;102:473–8.

    PubMed  Google Scholar 

  48. Karacorlu M, Ersoz MG, Arf S, Hocaoglu M, Sayman Muslubas I. Long-term follow-up of pachychoroid pigment epitheliopathy and lesion characteristics. Graefe’s Arch Clin Exp Ophthalmol. 2018;256:2319–26.

    Google Scholar 

  49. Ersoz MG, Karacorlu M, Arf S, Hocaoglu M, Sayman Muslubas I. Outer nuclear layer thinning in pachychoroid pigment epitheliopathy. Retina. 2018;38:957–61.

    PubMed  Google Scholar 

  50. Lee JH, Kim JY, Jung BJ, Lee WK. Focal disruptions in ellipsoid zone and interdigitation zone on spectral-domain optical coherence tomography in pachychoroid pigment epitheliopathy. Retina. 2019;39:1562–70.

    PubMed  Google Scholar 

  51. Takahashi A, Ooto S, Yamashiro K, Tamura H, Oishi A, Miyata M, et al. Pachychoroid geographic atrophy. Ophthalmol Retina. 2018;2:295–305.

    PubMed  Google Scholar 

  52. Yanagi Y, Mohla A, Lee WK, Lee SY, Mathur R, Chan CM, et al. Prevalence and risk factors for nonexudative neovascularization in fellow eyes of patients with unilateral age-related macular degeneration and polypoidal choroidal vasculopathy. Investig Opthalmology Vis Sci. 2017;58:3488–95.

    Google Scholar 

  53. Kim K, Kim JM, Kim DG, Yu S-Y, Kim ES. Five-year follow-up of unaffected fellow eyes in patients with polypoidal choroidal vasculopathy. Ophthalmologica. 2019. https://doi.org/10.1159/000501212.

    Article  PubMed  Google Scholar 

  54. Baek J, Lee JH, Lee WK. Retinoschisis in eyes with pachychoroid and retinal pigment epithelial atrophy. Graefe’s Arch Clin Exp Ophthalmol. 2019;257:1863–71.

    CAS  Google Scholar 

  55. Hariri A, Heussen FM, Nittala MG, Sadda SVR. Optical coherence tomographic correlates of angiographic subtypes of occult choroidal neovascularization. Investig Ophthalmol Vis Sci. 2013;54:8020–6.

    Google Scholar 

  56. Sato T, Kishi S, Watanabe G, Matsumoto H, Mukai R. Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy. Retina. 2007;27:589–94.

    PubMed  Google Scholar 

  57. Sheth J, Anantharaman G, Chandra S, Sivaprasad S. “Double-layer sign” on spectral domain optical coherence tomography in pachychoroid spectrum disease. Indian J Ophthalmol. 2018;66:1796–801.

    PubMed  PubMed Central  Google Scholar 

  58. Pichi F, Morara M, Veronese C, Ciardella AP. The overlapping spectrum of flat irregular pigment epithelial detachment investigated by optical coherence tomography angiography. Int Ophthalmol. 2018;38:975–83.

    PubMed  Google Scholar 

  59. Hwang H, Kim JY, Kim KT, Chae JB, Kim DY. Flat irregular pigment epithelium detachment in central serous chorioretinopathy. Retina. 2019. https://doi.org/10.1097/iae.0000000000002662.

    Article  PubMed  Google Scholar 

  60. Dansingani KK, Balaratnasingam C, Klufas MA, Sarraf D, Freund KB. Optical coherence tomography angiography of shallow irregular pigment epithelial detachments in pachychoroid spectrum disease. Am J Ophthalmol. 2015;160:1243–54.e2.

    Google Scholar 

  61. Carnevali A, Capuano V, Sacconi R, Querques L, Marchese A, Rabiolo A, et al. OCT angiography of treatment-naïve quiescent choroidal neovascularization in pachychoroid neovasculopathy. Ophthalmol Retina. 2017;1:328–32.

    PubMed  Google Scholar 

  62. Forte R, Coscas F, Serra R, Cabral D, Colantuono D, Souied EH. Long-term follow-up of quiescent choroidal neovascularisation associated with age-related macular degeneration or pachychoroid disease. Br J Ophthalmol. 2019. https://doi.org/10.1136/bjophthalmol-2019-315189.

    Article  PubMed  Google Scholar 

  63. Terao N, Koizumi H, Kojima K, Yamagishi T, Nagata K, Kitazawa K, et al. Association of upregulated angiogenic cytokines with choroidal abnormalities in chronic central serous chorioretinopathy. Investig Opthalmol Vis Sci. 2018;59:5924–31.

    CAS  Google Scholar 

  64. Hata M, Yamashiro K, Ooto S, Oishi A, Tamura H, Miyata M, et al. Intraocular vascular endothelial growth factor levels in pachychoroid neovasculopathy and neovascular age-related macular degeneration. Investig Ophthalmol Vis Sci. 2017;58:292–8.

    CAS  Google Scholar 

  65. Terao N, Koizumi H, Kojima K, Yamagishi T, Yamamoto Y, Yoshii K, et al. Distinct aqueous humour cytokine profiles of patients with pachychoroid neovasculopathy and neovascular age-related macular degeneration. Sci Rep. 2018;8:10520.

    PubMed  PubMed Central  Google Scholar 

  66. Azuma K, Tan X, Asano S, Shimizu K, Ogawa A, Inoue T, et al. The association of choroidal structure and its response to anti-VEGF treatment with the short-time outcome in pachychoroid neovasculopathy. PLoS One. 2019;14:e0212055.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cho HJ, Jung SH, Cho S, Han JO, Park S, Kim JW. Intravitreal anti-vascular endothelial growth factor treatment for pachychoroid neovasculopathy. J Ocul Pharmacol Ther. 2019;35:174–81.

    CAS  PubMed  Google Scholar 

  68. Jung BJ, Kim JY, Lee JH, Baek J, Lee K, Lee WK. Intravitreal aflibercept and ranibizumab for pachychoroid neovasculopathy. Sci Rep. 2019;9:2055.

    PubMed  PubMed Central  Google Scholar 

  69. Matsumoto H, Hiroe T, Morimoto M, Mimura K, Ito A, Akiyama H. Efficacy of treat-and-extend regimen with aflibercept for pachychoroid neovasculopathy and Type 1 neovascular age-related macular degeneration. Jpn J Ophthalmol. 2018;62:144–50.

    CAS  PubMed  Google Scholar 

  70. Roy R, Saurabh K, Shah D, Goel S. Treatment outcomes of pachychoroid neovasculopathy with photodynamic therapy and anti-vascular endothelial growth factor. Indian J Ophthalmol. 2019;67:1678.

    PubMed  PubMed Central  Google Scholar 

  71. Baek J, Lee JH, Jeon S, Lee WK. Choroidal morphology and short-term outcomes of combination photodynamic therapy in polypoidal choroidal vasculopathy. Eye. 2019;33:419–27.

    CAS  PubMed  Google Scholar 

  72. Padrón-Pérez N, Arias L, Rubio M, Lorenzo D, García-Bru P, Català-Mora J, et al. Changes in choroidal thickness after intravitreal injection of anti-vascular endothelial growth factor in pachychoroid neovasculopathy. Investig Ophthalmol Vis Sci. 2018;59:1119–24.

    Google Scholar 

  73. Hara C, Wakabayashi T, Toyama H, Fukushima Y, Sayanagi K, Sato S, et al. Characteristics of patients with neovascular age-related macular degeneration who are non-responders to intravitreal aflibercept. Br J Ophthalmol. 2019;103:623–9.

    Google Scholar 

  74. Cheung CMG, Lai TYY, Ruamviboonsuk P, Chen SJ, Chen Y, Freund KB, et al. Polypoidal choroidal vasculopathy. Ophthalmology. 2018;125:708–24.

    PubMed  Google Scholar 

  75. Ueta T, Obata R, Inoue Y, Iriyama A, Takahashi H, Yamaguchi T, et al. Background comparison of typical age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese patients. Ophthalmology. 2009;116:2400–6.

    PubMed  Google Scholar 

  76. Ueta T, Iriyama A, Francis J, Takahashi H, Adachi T, Obata R, et al. Development of typical age-related macular degeneration and polypoidal choroidal vasculopathy in fellow eyes of Japanese patients with exudative age-related macular degeneration. Am J Ophthalmol. 2008;146:96–101.e2.

    Google Scholar 

  77. Chung H, Byeon SH, Freund KB. Focal choroidal excavation and its association with pachychoroid spectrum disorders. Retina. 2017;37:199–221.

    PubMed  Google Scholar 

  78. Lee JH, Park H-YL, Baek J, Lee WK. Alterations of the lamina cribrosa are associated with peripapillary retinoschisis in glaucoma and pachychoroid spectrum disease. Ophthalmology. 2016;123:2066–76.

    PubMed  Google Scholar 

  79. Phasukkijwatana N, Freund KB, Dolz-Marco R, Al-Sheikh M, Keane PA, Egan CA, et al. Peripapillary pachychoroid syndrome. Retina. 2018;38:1652–67.

    PubMed  Google Scholar 

  80. Cheung CMG, Lee WK, Koizumi H, Dansingani K, Lai TYY, Freund KB. Pachychoroid disease. Eye. 2019;33:14–33.

    PubMed  Google Scholar 

  81. Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. Surv Ophthalmol. 1995;39:367–74.

    CAS  PubMed  Google Scholar 

  82. Ferris FL 3rd, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, et al. Clinical classification of age-related macular degeneration. Ophthalmology. 2013;120:844–51.

    PubMed  Google Scholar 

  83. Maruko I, Iida T, Saito M, Nagayama D, Saito K. Clinical characteristics of exudative age-related macular degeneration in Japanese patients. Am J Ophthalmol. 2007;144:15–22.e2.

    Google Scholar 

  84. Yoshimura N. Age-related Macular Degeneration in the Japanese. Nihon Ganka Gakkai Zasshi. 2016;120:163–88 (discussion 189, in Japanese).

    PubMed  Google Scholar 

  85. Takahashi K, Ishibashi T, Ogur Y, Yuzawa M. Classification and diagnostic criteria of age-related macular degeneration. Nihon Ganka Gakkai Zasshi. 2008;112:1076–84 (in Japanese).

    PubMed  Google Scholar 

  86. Tan CS, Ngo WK, Chen JP, Tan NW, Lim TH. EVEREST study report 2: imaging and grading protocol, and baseline characteristics of a randomised controlled trial of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2015;99:624–8.

    PubMed  PubMed Central  Google Scholar 

  87. Yannuzzi LA, Negrão S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, et al. Retinal angiomatous proliferation in age-related macular degeneration. Retina. 2001;21:416–34.

    CAS  PubMed  Google Scholar 

  88. Freund KB, Ho IV, Barbazetto IA, Koizumi H, Laud K, Ferrara D, et al. Type 3 neovascularization: the expanded spectrum of retinal angiomatous proliferation. Retina. 2008;28:201–11.

    PubMed  Google Scholar 

  89. Wong CW, Yanagi Y, Lee WK, Ogura Y, Yeo I, Wong TY, et al. Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians. Prog Retin Eye Res. 2016;53:107–39.

    PubMed  Google Scholar 

  90. Hageman G. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res. 2001;20:705–32.

    CAS  PubMed  Google Scholar 

  91. Yanagi Y, Foo VHX, Yoshida A. Asian age-related macular degeneration: from basic science research perspective. Eye. 2019;33:34–49.

    PubMed  Google Scholar 

  92. Yuzawa M. The origins of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2005;89:602–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tanaka K, Mori R, Kawamura A, Nakashizuka H, Wakatsuki Y, Yuzawa M. Comparison of OCT angiography and indocyanine green angiographic findings with subtypes of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2017;101:51–5.

    PubMed  Google Scholar 

  94. Coscas G, Lupidi M, Coscas F, Benjelloun F, Zerbib J, Dirani A, et al. Toward a specific classification of polypoidal choroidal vasculopathy: idiopathic disease or subtype of age-related macular degeneration. Investig Ophthalmol Vis Sci. 2015;56:3187–95.

    CAS  Google Scholar 

  95. Jang JW, Kim JM, Kang SW, Kim SJ, Bae K, Kim KT. Typical polypoidal choroidal vasculopathy and polypoidal choroidal neovascularization. Retina. 2019;39:1995–2003.

    CAS  PubMed  Google Scholar 

  96. Hata M, Tagawa M, Oishi A, Kawashima Y, Nakata I, Akagi-Kurashige Y, et al. Efficacy of photodynamic therapy for polypoidal choroidal vasculopathy associated with and without pachychoroid phenotypes. Ophthalmol Retina. 2019;3:1016–25.

    PubMed  Google Scholar 

  97. Lee WK, Baek J, Dansingani KK, Lee JH, Freund KB. Choroidal morphology in eyes with polypoidal choroidal vasculopathy and normal or subnormal subfoveal choroidal thickness. Retina. 2016;36:S73–82.

    PubMed  Google Scholar 

  98. Hosoda Y, Yoshikawa M, Miyake M, Tabara Y, Ahn J, Woo SJ, et al. CFH and VIPR2 as susceptibility loci in choroidal thickness and pachychoroid disease central serous chorioretinopathy. Proc Natl Acad Sci. 2018;115:6261–6.

    CAS  PubMed  Google Scholar 

  99. Lehmann M, Bousquet E, Beydoun T, Behar-Cohen F. Pachychoroid. Retina. 2015;35:10–6.

    PubMed  Google Scholar 

  100. Hosoda Y, Yamashiro K, Miyake M, Ooto S, Oishi A, Miyata M, et al. Predictive genes for the prognosis of central serous chorioretinopathy. Ophthalmol Retina. 2019;3:985–92.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Yanagi.

Ethics declarations

Conflicts of interest

Y. Yanagi, None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Organizer: Akitaka Tsujikawa, MD

Corresponding Author: Yasuo Yanagi

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanagi, Y. Pachychoroid disease: a new perspective on exudative maculopathy. Jpn J Ophthalmol 64, 323–337 (2020). https://doi.org/10.1007/s10384-020-00740-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-020-00740-5

Keywords

Navigation