Skip to main content

Advertisement

Log in

Outcomes of vitrectomy combined with subretinal tissue plasminogen activator injection for submacular hemorrhage associated with polypoidal choroidal vasculopathy

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To examine the outcomes of vitrectomy with subretinal tissue plasminogen activator (tPA) injection and postoperative intravitreal antivascular endothelial growth factor (VEGF) injection for submacular hemorrhage (SMH) associated with polypoidal choroidal vasculopathy (PCV).

Study design

Retrospective, consecutive case series.

Methods

Patients who underwent vitrectomy for SMH associated with PCV and who were followed up for at least 12 months were included. Surgery consisted of vitrectomy with subretinal tPA and air tamponade. Postoperative intravitreal anti-VEGF was administered pro re nata. The following were examined: best-corrected visual acuity (BCVA) at baseline, at 1 month, and at the final visit; the percentage of patients requiring anti-VEGF postoperatively; and the number of injections administered.

Results

This study included 23 eyes of 23 patients (21 men, 2 women) with a mean age of 72.5 ± 9.0 years. The mean duration from disease onset to surgery was 9.0 ± 6.6 days. The mean maximum SMH size was 5.8 ± 4.8 disc diameters. The mean follow-up period was 33 ± 14 months. The BCVA was significantly improved when compared with baseline 1 month after surgery and at the final visit. Postoperative anti-VEGF was required for 91% of the eyes. In eyes that underwent anti-VEGF therapy until the final visit, the mean injection number was 4.1/year.

Conclusions

Vitrectomy with subretinal tPA and air tamponade improved visual acuity in patients with SMH associated with PCV. Postoperative intravitreal anti-VEGF injection maintained the improved BCVA throughout a mean period of 33 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Uyama M, Wada M, Nagai Y, Matsubara T, Matsunaga H, Fukushima I, et al. Polypoidal choroidal vasculopathy: natural history. Am J Ophthalmol. 2002;133:639–48.

    Article  PubMed  Google Scholar 

  2. Sho K, Takahashi K, Yamada H, Wada M, Nagai Y, Otsuji T, et al. Polypoidal choroidal vasculopathy: incidence, demographic features, and clinical characteristics. Arch Ophthalmol. 2003;121:1392–6.

    Article  PubMed  Google Scholar 

  3. Ohji M, Saito Y, Hayashi A, Lewis JM, Tano Y. Pneumatic displacement of subretinal hemorrhage without tissue plasminogen activator. Arch Ophthalmol. 1998;116:1326–32.

    Article  CAS  PubMed  Google Scholar 

  4. Hesse L, Schmidt J, Kroll P. Management of acute submacular hemorrhage using recombinant tissue plasminogen activator and gas. Graefes Arch Clin Exp Ophthalmol. 1999;237:273–7.

    Article  CAS  PubMed  Google Scholar 

  5. Haupert CL, McCuen BW, Jaffe GJ, Steuer ER, Cox TA, Toth CA, et al. Pars plana vitrectomy, subretinal injection of tissue plasminogen activator, and fluid–gas exchange for displacement of thick submacular hemorrhage in age-related macular degeneration. Am J Ophthalmol. 2001;131:208–15.

    Article  CAS  PubMed  Google Scholar 

  6. Fine HF, Iranmanesh R, Del Priore LV, Barile GR, Chang LK, Chang S, et al. Surgical outcomes after massive subretinal hemorrhage secondary to age-related macular degeneration. Retina. 2010;30:1588–94.

    Article  PubMed  Google Scholar 

  7. Kimura S, Morizane Y, Hosokawa M, Shiode Y, Kawata T, Doi S, et al. Submacular hemorrhage in polypoidal choroidal vasculopathy treated by vitrectomy and subretinal tissue plasminogen activator. Am J Ophthalmol. 2015;159:683–9.

    Article  CAS  PubMed  Google Scholar 

  8. Chen CY, Hooper C, Chiu D, Chamberlain M, Karia N, Heriot WJ. Management of submacular hemorrhage with intravitreal injection of tissue plasminogen activator and expansile gas. Retina. 2007;27:321–8.

    Article  PubMed  Google Scholar 

  9. Hattenbach LO, Klais C, Koch FH, Gümbel HO. Intravitreous injection of tissue plasminogen activator and gas in the treatment of submacular hemorrhage under various conditions. Ophthalmology. 2001;108:1485–92.

    Article  CAS  PubMed  Google Scholar 

  10. Kitagawa Y, Shimada H, Mori R, Tanaka K, Yuzawa M. Intravitreal tissue plasminogen activator, ranibizumab, and gas injection for submacular hemorrhage in polypoidal choroidal vasculopathy. Ophthalmology. 2016;123:1278–86.

    Article  PubMed  Google Scholar 

  11. Olivier S. Subretinal recombinant tissue plasminogen activator injection and pneumatic displacement of thick submacular hemorrhage in age-related macular degeneration. Ophthalmology. 2004;111:1201–8.

    Article  PubMed  Google Scholar 

  12. Treumer F, Klatt C, Roider J, Hillenkamp J. Subretinal coapplication of recombinant tissue plasminogen activator and bevacizumab for neovascular age-related macular degeneration with submacular haemorrhage. Br J Ophthalmol. 2009;94:48–53.

    Article  PubMed  Google Scholar 

  13. Treumer F, Roider J, Hillenkamp J. Long-term outcome of subretinal coapplication of rtPA and bevacizumab followed by repeated intravitreal anti-VEGF injections for neovascular AMD with submacular haemorrhage. Br J Ophthalmol. 2012;96:708–13.

    Article  PubMed  Google Scholar 

  14. Kadonosono K, Arakawa A, Yamane S, Inoue M, Yamakawa T, Uchio E, et al. Displacement of submacular hemorrhages in age-related macular degeneration with subretinal tissue plasminogen activator and air. Ophthalmology. 2015;122:123–8.

    Article  PubMed  Google Scholar 

  15. van Zeeburg EJ, van Meurs JC. Literature review of recombinant tissue plasminogen activator used for recent-onset submacular hemorrhage displacement in age-related macular degeneration. Ophthalmologica. 2013;229:1–14.

    Article  CAS  PubMed  Google Scholar 

  16. Kimura S, Morizane Y, Matoba R, Hosokawa M, Shiode Y, Hirano M, et al. Retinal sensitivity after displacement of submacular hemorrhage due to polypoidal choroidal vasculopathy: effectiveness and safety of subretinal tissue plasminogen activator. Jpn J Ophthalmol. 2017;61:472–8.

    Article  CAS  PubMed  Google Scholar 

  17. Imamura Y, Engelbert M, Iida T, Freund KB, Yannuzzi LA. Polypoidal choroidal vasculopathy: a review. Surv Ophthalmol. 2010;55:501–5.

    Article  PubMed  Google Scholar 

  18. Treatment of Age-Related Macular Degeneration with Photodynamic Therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials—TAP report 1. Arch Ophthalmol. 1999;117:1329–45.

    Article  Google Scholar 

  19. Okanouchi T, Toshima S, Kimura S, Morizane Y, Shiraga F. Novel technique for subretinal injection using local removal of the internal limiting membrane. Retina. 2016;36:1035–8.

    Article  PubMed  Google Scholar 

  20. Sakamoto T, Sheu SJ, Arimura N, Sameshima S, Shimura M, Uemura A, et al. Vitrectomy for exudative age-related macular degeneration with vitreous hemorrhage. Retina. 2010;30:856–64.

    Article  PubMed  Google Scholar 

  21. Treumer F, Wienand S, Purtskhvanidze K, Roider J, Hillenkamp J. The role of pigment epithelial detachment in AMD with submacular hemorrhage treated with vitrectomy and subretinal co-application of rtPA and anti-VEGF. Graefes Arch Clin Exp Ophthalmol. 2017;255:1–9.

    Article  CAS  Google Scholar 

  22. González-López JJ, McGowan G, Chapman E, Yorston D. Vitrectomy with subretinal tissue plasminogen activator and ranibizumab for submacular haemorrhages secondary to age-related macular degeneration: retrospective case series of 45 consecutive cases. Eye. 2016;30:929–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koh A, Lee WK, Chen LJ, Chen SJ, Hashad Y, Kim H, et al. EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy. Retina. 2012;32:1453–64.

    Article  CAS  PubMed  Google Scholar 

  24. Lee WK, Iida T, Ogura Y, Chen SJ, Wong TY, Mitchell P, et al. Efficacy and safety of intravitreal aflibercept for polypoidal choroidal vasculopathy in the PLANET study: a randomized clinical trial. JAMA Ophthalmol. 2018;136:786–93.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Inoue M, Yamane S, Taoka R, Arakawa A, Kadonosono K. Aflibercept for polypoidal choroidal vasculopathy: as needed versus fixed interval dosing. Retina. 2016;36:1527–34.

    Article  PubMed  Google Scholar 

  26. Hosokawa M, Morizane Y, Hirano M, Kimura S, Kumase F, Shiode Y, et al. One-year outcomes of a treat-and-extend regimen of intravitreal aflibercept for polypoidal choroidal vasculopathy. Jpn J Ophthalmol. 2017;61:1–9.

    Article  CAS  Google Scholar 

  27. Gomi F, Oshima Y, Mori R, Kano M, Saito M, Yamashita A, et al. Initial versus delayed photodynamic therapy in combination with ranibizumab for treatment of polypoidal choroidal vasculopathy. Retina. 2015;35:1569–76.

    Article  CAS  PubMed  Google Scholar 

  28. Takayama K, Kaneko H, Kataoka K, Hattori K, Ra E, Tsunekawa T, et al. Comparison between 1-year outcomes of aflibercept with and without photodynamic therapy for polypoidal choroidal vasculopathy: retrospective observation study. PLoS ONE. 2017;12:e0176100–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koh A, Lai TYY, Takahashi K, Wong TY, Chen LJ, Ruamviboonsuk P, et al. Efficacy and safety of ranibizumab with or without verteporfin photodynamic therapy for polypoidal choroidal vasculopathy. JAMA Ophthalmol. 2017;135:1206–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee SS, Ghosn C, Yu Z, Zacharias LC, Kao H, Lanni C, et al. Vitreous VEGF clearance is increased after vitrectomy. Invest Ophthalmol Vis Sci. 2010;51:2135–8.

    Article  PubMed  Google Scholar 

  31. Kakinoki M, Sawada O, Sawada T, Saishin Y, Kawamura H, Ohji M. Effect of vitrectomy on aqueous VEGF concentration and pharmacokinetics of bevacizumab in macaque monkeys. Invest Ophthalmol Vis Sci. 2012;53:5877–80.

    Article  CAS  PubMed  Google Scholar 

  32. Christoforidis JB, Williams MM, Wang J, Jiang A, Pratt C, Abdel-Rasoul M, et al. Anatomic and pharmacokinetic properties of intravitreal bevacizumab and ranibizumab after vitrectomy and lensectomy. Retina. 2013;33:946–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahn J, Kim H, Woo SJ, Park JH, Park S, Hwang DJ, et al. Pharmacokinetics of intravitreally injected bevacizumab in vitrectomized eyes. J Ocul Pharmacol Ther. 2013;29:612–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahn SJ, Ahn J, Park S, Kim H, Hwang DJ, Park JH, et al. Intraocular pharmacokinetics of ranibizumab in vitrectomized versus nonvitrectomized eyes. Invest Ophthalmol Vis Sci. 2014;55:567–73.

    Article  CAS  PubMed  Google Scholar 

  35. Bressler SB, Melia M, Glassman AR, Almukhtar T, Jampol LM, Shami M, et al. Ranibizumab plus prompt or deferred laser for diabetic macular edema in eyes with vitrectomy before anti-vascular endothelial growth factor therapy. Retina. 2015;35:2516–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cho HJ, Kim KM, Kim HS, Han Il J, Kim CG, Lee TG, et al. Intravitreal aflibercept and ranibizumab injections for polypoidal choroidal vasculopathy. Am J Ophthalmol. 2016;165:1–6.

    Article  CAS  PubMed  Google Scholar 

  37. Hikichi T. Six-year outcomes of antivascular endothelial growth factor monotherapy for polypoidal choroidal vasculopathy. Br J Ophthalmol. 2018;102:97–101.

    Article  PubMed  Google Scholar 

  38. Tachi N, Ogino N. Vitrectomy for diffuse macular edema in cases of diabetic retinopathy. Am J Ophthalmol. 1996;122:258–60.

    Article  CAS  PubMed  Google Scholar 

  39. Stefánsson E. Physiology of vitreous surgery. Graefes Arch Clin Exp Ophthalmol. 2008;247:147–63.

    Article  PubMed  Google Scholar 

  40. Navarrete-Sanchis J, Zarco-Bosquets J, Tomas-Torrent JM, Diago T, Ortega-Evangelio L. Long-term effectiveness of vitrectomy in diabetic cystoid macular edema. Graefes Arch Clin Exp Ophthalmol. 2015;253:713–9.

    Article  PubMed  Google Scholar 

  41. Kimura S, Morizane Y, Toshima S, Hosogi M, Kumase F, Hosokawa M, et al. Efficacy of vitrectomy and inner limiting membrane peeling in age-related macular degeneration resistant to anti-vascular endothelial growth factor therapy, with vitreomacular traction or epiretinal membrane. Graefes Arch Clin Exp Ophthalmol. 2016;254:1731–6.

    Article  PubMed  Google Scholar 

  42. Johnson MW, Olsen KR, Hernandez E, Irvine WD, Johnson RN. Retinal toxicity of recombinant tissue plasminogen activator in the rabbit. Arch Ophthalmol. 1990;108:259–63.

    Article  CAS  PubMed  Google Scholar 

  43. Haritoglou C, Mauell S, Benoit M, Schumann RG, Henrich PB, Wolf A, et al. Vital dyes increase the rigidity of the internal limiting membrane. Eye. 2013;27:1308–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Morizane.

Ethics declarations

Conflicts of interest

S Kimura, None; Y. Morizane, None; M. Morizane Hosokawa, None; Y. Shiode, None; S. Doi, None; M. Hosogi, None; A. Fujiwara, None; T. Okanouchi, None; Y. Inoue, None; F. Shiraga, None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding author: Yuki Morizane

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, S., Morizane, Y., Hosokawa, M.M. et al. Outcomes of vitrectomy combined with subretinal tissue plasminogen activator injection for submacular hemorrhage associated with polypoidal choroidal vasculopathy. Jpn J Ophthalmol 63, 382–388 (2019). https://doi.org/10.1007/s10384-019-00679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-019-00679-2

Keywords

Navigation