Skip to main content

Advertisement

Log in

Physiology of vitreous surgery

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Vitreous surgery has various physiological and clinical consequences, both beneficial and harmful. Vitrectomy reduces the risk of retinal neovascularization, while increasing the risk of iris neovascularization, reduces macular edema and stimulates cataract formation. These clinical consequences may be understood with the help of classical laws of physics and physiology. The laws of Fick, Stokes-Einstein and Hagen-Poiseuille state that molecular transport by diffusion or convection is inversely related to the viscosity of the medium. When the vitreous gel is replaced with less viscous saline, the transport of all molecules, including oxygen and cytokines, is facilitated. Oxygen transport to ischemic retinal areas is improved, as is clearance of VEGF and other cytokines from these areas, thus reducing edema and neovascularization. At the same time, oxygen is transported faster down a concentration gradient from the anterior to the posterior segment, while VEGF moves in the opposite direction, making the anterior segment less oxygenated and with more VEGF, stimulating iris neovascularization. Silicone oil is the exception that proves the rule: it is more viscous than vitreous humour, re-establishes the transport barrier to oxygen and VEGF, and reduces the risk for iris neovascularization in the vitrectomized-lentectomized eye. Modern vitreous surgery involves a variety of treatment options in addition to vitrectomy itself, such as photocoagulation, anti-VEGF drugs, intravitreal steroids and release of vitreoretinal traction. A full understanding of these treatment modalities allows sensible combination of treatment options. Retinal photocoagulation has repeatedly been shown to improve retinal oxygenation, as does vitrectomy. Oxygen naturally reduces VEGF production and improves retinal hemodynamics. The VEGF-lowering effect of photocoagulation and vitrectomy can be augmented with anti-VEGF drugs and the permeability effect of VEGF reduced with corticosteroids. Starling’s law explains vasogenic edema, which is controlled by osmotic and hydrostatic gradients between vessel and tissue. It explains the effect of VEGF-induced vascular permeability changes on plasma protein leakage and the osmotic gradient between vessel and tissue. At the same time, it takes into account hemodynamic changes that affect the hydrostatic gradient. This includes the influence of arterial blood pressure, and the effect oxygen (laser treatment) has in constricting retinal arterioles, increasing their resistance, and thus reducing the hydrostatic pressure in the microcirculation. Reduced capillary hydrostatic pressure and increased osmotic gradient reduce water fluxes from vessel to tissue and reduce edema. Finally, Newton’s third law explains that vitreoretinal traction decreases hydrostatic tissue pressure in the retina, increases the pressure gradient between vessel and tissue, and stimulates water fluxes from vessel into tissue, leading to edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schulze S, Hoerle S, Mennel S, Kroll P (2008) Vitreomacular traction and exudative age-related macular degeneration. Acta Ophthalmol 86:470–481

    Article  PubMed  Google Scholar 

  2. Dodo T, Okuzawa Y, Baba N (1969) Trans-pupillary resection of vitreous body opacity. Ganka 11(1):38–44

    PubMed  CAS  Google Scholar 

  3. Kasner D, Miller GR, Taylor WH, Sever RJ, Norton W (1968) Surgical treatment of amyloidosis of the vitreous. Trans Am Acad Ophthalmol Otolaryngol 72(3):410–418

    PubMed  CAS  Google Scholar 

  4. Kloti R (1975) Pars plana vitrectomy with the vitreous stripper. Mod Probl Ophthalmol 15:246–252

    PubMed  CAS  Google Scholar 

  5. Kloti R (1973) Vitrectomy. I. A new instrument for posterior vitrectomy. Albrecht Von Graefes Arch Klin Exp Ophthalmol 187(2):161–170, doi:10.1007/BF00411214

    Article  PubMed  CAS  Google Scholar 

  6. Machemer R (1976) Pars plana vitrectomy. Summary. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 81(3 Pt 1):431

    PubMed  CAS  Google Scholar 

  7. Machemer R, Buettner H, Norton EW, Parel JM (1971) Vitrectomy: a pars plana approach. Trans Am Acad Ophthalmol Otolaryngol 75(4):813–820

    PubMed  CAS  Google Scholar 

  8. Stefansson E, Loftsson T (2006) The Stokes-Einstein equation and the physiological effects of vitreous surgery. Acta Ophthalmol Scand 84(6):718–719, doi:10.1111/j.1600-0420.2006.00778.x

    Article  PubMed  Google Scholar 

  9. Boruchoff SA, Woodin AM (1956) Viscosity and composition of solutions derived from rabbit vitreous humour. Br J Ophthalmol 40(2):113–118, doi:10.1136/bjo.40.2.113

    Article  PubMed  CAS  Google Scholar 

  10. Madinaveitia J, Quibell TH (1941) Diffusing factors: The effect of salts on the action of testicular extracts on the viscosity of vitreous humour preparations. Biochem J 35(4):456–460

    PubMed  CAS  Google Scholar 

  11. Madinaveitia J, Quibell TH (1940) Studies on diffusing factors: The action of testicular extracts on the viscosity of vitreous humour preparations. Biochem J 34(4):625–631

    PubMed  CAS  Google Scholar 

  12. Madinaveitia J, Quibell TH (1941) Studies on diffusing factors: The reduction of the viscosity of vitreous humour preparations by ascorbic acid and some diazo compounds. Biochem J 35(4):453–455

    PubMed  CAS  Google Scholar 

  13. Lee B, Litt M, Buchsbaum G (1992) Rheology of the vitreous body. Part I: Viscoelasticity of human vitreous. Biorheology 29(5–6):521–533

    PubMed  CAS  Google Scholar 

  14. Gisladottir S, Loftsson T, Stefansson E (2007) Diffusion in the vitreous cavity is related to the viscosity of the medium according to the Stokes Einstein equation. ARVO annual meeting, Fort Lauderdale, Florida, May 6–10 2007, Presentation Number: (5783/B320).

  15. Sebag J, Ansari RR, Suh KI (2007) Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients. Graefes Arch Clin Exp Ophthalmol 245(4):576–580, doi:10.1007/s00417-006-0394-3

    Article  PubMed  CAS  Google Scholar 

  16. Soman N, Banerjee R (2003) Artificial vitreous replacements. Biomed Mater Eng 13(1):59–74

    PubMed  CAS  Google Scholar 

  17. Stefansson E, Landers MB 3rd, Wolbarsht ML (1981) Increased retinal oxygen supply following pan-retinal photocoagulation and vitrectomy and lensectomy. Trans Am Ophthalmol Soc 79:307–334

    PubMed  CAS  Google Scholar 

  18. Stefansson E, Landers MB 3rd, Wolbarsht ML (1982) Vitrectomy, lensectomy, and ocular oxygenation. Retina 2(3):159–166, doi:10.1097/00006982-198200230-00006

    Article  PubMed  CAS  Google Scholar 

  19. de Juan E Jr, Hardy M, Hatchell DL, Hatchell MC (1986) The effect of intraocular silicone oil on anterior chamber oxygen pressure in cats. Arch Ophthalmol 104(7):1063–1064

    PubMed  Google Scholar 

  20. Blair NP (2000) Ocular oxygen consumption during vitreoperfusion in the cat. Trans Am Ophthalmol Soc 98:305–329

    PubMed  CAS  Google Scholar 

  21. Blair NP, Baker DS, Rhode JP, Solomon M (1989) Vitreoperfusion. A new approach to ocular ischemia. Arch Ophthalmol 107(3):417–423

    CAS  Google Scholar 

  22. Maeda N, Tano Y (1996) Intraocular oxygen tension in eyes with proliferative diabetic retinopathy with and without vitreous. Graefes Arch Clin Exp Ophthalmol 234(Suppl 1):S66–S69, doi:10.1007/BF02343050

    Article  PubMed  Google Scholar 

  23. Holekamp NM, Shui YB, Beebe DC (2005) Vitrectomy surgery increases oxygen exposure to the lens: a possible mechanism for nuclear cataract formation. Am J Ophthalmol 139(2):302–310, doi:10.1016/j.ajo.2004.09.046

    Article  PubMed  Google Scholar 

  24. Shui YB, Fu JJ, Garcia C, Dattilo LK, Rajagopal R, McMillan S et al (2006) Oxygen distribution in the rabbit eye and oxygen consumption by the lens. Invest Ophthalmol Vis Sci 47(4):1571–1580, doi:10.1167/iovs.05-1475

    Article  PubMed  Google Scholar 

  25. Jampol LM (1987) Oxygen therapy and intraocular oxygenation. Trans Am Ophthalmol Soc 85:407–437

    PubMed  CAS  Google Scholar 

  26. Ben-Nun J, Alder VA, Cringle SJ, Constable IJ (1988) A new method for oxygen supply to acute ischemic retina. Invest Ophthalmol Vis Sci 29(2):298–304

    PubMed  CAS  Google Scholar 

  27. Wilson CA, Benner JD, Berkowitz BA, Chapman CB, Peshock RM (1994) Transcorneal oxygenation of the preretinal vitreous. Arch Ophthalmol 112(6):839–845

    PubMed  CAS  Google Scholar 

  28. Wilson CA, Berkowitz BA, Srebro R (1995) Perfluorinated organic liquid as an intraocular oxygen reservoir for the ischemic retina. Invest Ophthalmol Vis Sci 36(1):131–141

    PubMed  CAS  Google Scholar 

  29. Cringle SJ, Yu DY, Alder VA, Su EN (1994) Intravitreal perfluorocarbon and oxygen delivery in induced retinal ischaemia. Adv Exp Med Biol 361:303–311

    PubMed  CAS  Google Scholar 

  30. Sebag J (1987) Age-related changes in human vitreous structure. Graefes Arch Clin Exp Ophthalmol 225(2):89–93, doi:10.1007/BF02160337

    Article  PubMed  CAS  Google Scholar 

  31. Sebag J (2004) Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefes Arch Clin Exp Ophthalmol 242(8):690–698, doi:10.1007/s00417-004-0980-1

    Article  PubMed  CAS  Google Scholar 

  32. Gandorfer A (2008) Experimental evaluation of microplasmin - an alternative to vital dyes. Dev Ophthalmol 42:153–159, doi:10.1159/000139004

    Article  PubMed  Google Scholar 

  33. Sebag J (2005) Molecular biology of pharmacologic vitreolysis. Trans Am Ophthalmol Soc 103:473–494

    PubMed  CAS  Google Scholar 

  34. Sebag J (1987) Pharmacologic vitreolysis. Retina 18(1):1–3, doi:10.1097/00006982-199818010-00001

    Google Scholar 

  35. Quiram PA, Leverenz VR, Baker RM, Dang L, Giblin FJ, Trese MT (2007) Microplasmin-induced posterior vitreous detachment affects vitreous oxygen levels. Retina 27(8):1090–1096

    PubMed  Google Scholar 

  36. Laqua H (1980) [Rubeosis iridis following pars plana vitrectomy (author’s transl)]. Klin Monatsbl Augenheilkd 177(1):24–30

    Article  PubMed  CAS  Google Scholar 

  37. Rice TA, Michels RG, Maguire MG, Rice EF (1983) The effect of lensectomy on the incidence of iris neovascularization and neovascular glaucoma after vitrectomy for diabetic retinopathy. Am J Ophthalmol 95(1):1–11

    PubMed  CAS  Google Scholar 

  38. Alder VA, Cringle SJ, Brown M (1987) The effect of regional retinal photocoagulation on vitreal oxygen tension. Invest Ophthalmol Vis Sci 28(7):1078–1085

    PubMed  CAS  Google Scholar 

  39. Budzynski E, Smith JH, Bryar P, Birol G, Linsenmeier RA (2008) Effects of photocoagulation on intraretinal PO2 in cat. Invest Ophthalmol Vis Sci 49(1):380–389, doi:10.1167/iovs.07-0065

    Article  PubMed  Google Scholar 

  40. Diddie KR, Ernest JT (1977) The effect of photocoagulation on the choroidal vasculature and retinal oxygen tension. Am J Ophthalmol 84(1):62–66

    PubMed  CAS  Google Scholar 

  41. Funatsu H, Wilson CA, Berkowitz BA, Sonkin PL (1997) A comparative study of the effects of argon and diode laser photocoagulation on retinal oxygenation. Graefes Arch Clin Exp Ophthalmol 235(3):168–175, doi:10.1007/BF00941724

    Article  PubMed  CAS  Google Scholar 

  42. Landers MB 3rd, Stefansson E, Wolbarsht ML (1982) Panretinal photocoagulation and retinal oxygenation. Retina 2(3):167–175, doi:10.1097/00006982-198200230-00007

    Article  PubMed  Google Scholar 

  43. Molnar I, Poitry S, Tsacopoulos M, Gilodi N, Leuenberger PM (1985) Effect of laser photocoagulation on oxygenation of the retina in miniature pigs. Invest Ophthalmol Vis Sci 26(10):1410–1414

    PubMed  CAS  Google Scholar 

  44. Novack RL, Stefansson E, Hatchell DL (1990) The effect of photocoagulation on the oxygenation and ultrastructure of avascular retina. Exp Eye Res 50(3):289–296, doi:10.1016/0014-4835(90)90213-E

    Article  PubMed  CAS  Google Scholar 

  45. Pournaras CJ, Ilic J, Gilodi N, Tsacopoulos M, Leuenberger MP (1985) Experimental venous thrombosis: preretinal PO2 before and after photocoagulation. Klin Monatsbl Augenheilkd 186(6):500–501

    Article  PubMed  CAS  Google Scholar 

  46. Pournaras CJ, Tsacopoulos M, Strommer K, Gilodi N, Leuenberger PM (1990) Scatter photocoagulation restores tissue hypoxia in experimental vasoproliferative microangiopathy in miniature pigs. Ophthalmology 97(10):1329–1333

    PubMed  CAS  Google Scholar 

  47. Stefansson E (2006) Ocular oxygenation and the treatment of diabetic retinopathy. Surv Ophthalmol 51(4):364–380, doi:10.1016/j.survophthal.2006.04.005

    Article  PubMed  Google Scholar 

  48. Stefansson E, Hatchell DL, Fisher BL, Sutherland FS, Machemer R (1986) Panretinal photocoagulation and retinal oxygenation in normal and diabetic cats. Am J Ophthalmol 101(6):657–664

    PubMed  CAS  Google Scholar 

  49. Stefansson E, Machemer R, de Juan E Jr, McCuen BW 2nd, Peterson J (1992) Retinal oxygenation and laser treatment in patients with diabetic retinopathy. Am J Ophthalmol 113(1):36–38

    PubMed  CAS  Google Scholar 

  50. Yu DY, Cringle SJ, Su E, Yu PK, Humayun MS, Dorin G (2005) Laser-induced changes in intraretinal oxygen distribution in pigmented rabbits. Invest Ophthalmol Vis Sci 46(3):988–999, doi:10.1167/iovs.04-0767

    Article  PubMed  Google Scholar 

  51. Blankenship GW, Machemer R (1985) Long-term diabetic vitrectomy results. Report of 10-year follow-up. Ophthalmology 92(4):503–506

    CAS  Google Scholar 

  52. Stefansson E, Novack RL, Hatchell DL (1990) Vitrectomy prevents retinal hypoxia in branch retinal vein occlusion. Invest Ophthalmol Vis Sci 31(2):284–289

    PubMed  CAS  Google Scholar 

  53. Nasrallah FP, Jalkh AE, Van Coppenolle F, Kado M, Trempe CL, McMeel JW et al (1988) The role of the vitreous in diabetic macular edema. Ophthalmology 95(10):1335–1339

    PubMed  CAS  Google Scholar 

  54. Sivaprasad S, Ockrim Z, Massaoutis P, Ikeji F, Hykin PG, Gregor ZJ (2008) Posterior hyaloid changes following intravitreal triamcinolone and macular laser for diffuse diabetic macular Edema. Retina [epub ahead of print Jul 14]

  55. Kaiser PK, Riemann CD, Sears JE, Lewis H (2001) Macular traction detachment and diabetic macular edema associated with posterior hyaloidal traction. Am J Ophthalmol 131(1):44–49, doi:10.1016/S0002-9394(00)00872-2

    Article  PubMed  CAS  Google Scholar 

  56. Lewis H (2001) The role of vitrectomy in the treatment of diabetic macular edema. Am J Ophthalmol 131(1):123–125, doi:doi:10.1016/S0002-9394(00)00660-7

    Article  PubMed  CAS  Google Scholar 

  57. Lewis H, Abrams GW, Blumenkranz MS, Campo RV (1992) Vitrectomy for diabetic macular traction and edema associated with posterior hyaloidal traction. Ophthalmology 99(5):753–759

    PubMed  CAS  Google Scholar 

  58. Figueroa MS, Contreras I, Noval S (2008) Surgical and anatomical outcomes of pars plana vitrectomy for diffuse nontractional diabetic macular edema. Retina 28(3):420–426

    PubMed  Google Scholar 

  59. Hartley KL, Smiddy WE, Flynn HW Jr, Murray TG (2008) Pars plana vitrectomy with internal limiting membrane peeling for diabetic macular edema. Retina 28(3):410–419

    PubMed  Google Scholar 

  60. Patel JI, Hykin PG, Schadt M, Luong V, Fitzke F, Gregor ZJ (2006) Pars plana vitrectomy for diabetic macular oedema: OCT and functional correlations. Eye 20(6):674–680, doi:10.1038/sj.eye.6701945

    Article  PubMed  CAS  Google Scholar 

  61. Shimonagano Y, Makiuchi R, Miyazaki M, Doi N, Uemura A, Sakamoto T (2007) Results of visual acuity and foveal thickness in diabetic macular edema after vitrectomy. Jpn J Ophthalmol 51(3):204–209, doi:10.1007/s10384-007-0423-8

    Article  PubMed  Google Scholar 

  62. Stolba U, Binder S, Gruber D, Krebs I, Aggermann T, Neumaier B (2005) Vitrectomy for persistent diffuse diabetic macular edema. Am J Ophthalmol 140(2):295–301

    PubMed  Google Scholar 

  63. Yamamoto T, Takeuchi S, Sato Y, Yamashita H (2007) Long-term follow-up results of pars plana vitrectomy for diabetic macular edema. Jpn J Ophthalmol 51(4):285–291, doi:10.1007/s10384-007-0448-z

    Article  PubMed  Google Scholar 

  64. Yanyali A, Horozoglu F, Celik E, Nohutcu AF (2007) Long-term outcomes of pars plana vitrectomy with internal limiting membrane removal in diabetic macular edema. Retina 27(5):557–566, doi:10.1097/01.iae.0000249390.61854.d5

    Article  PubMed  Google Scholar 

  65. Hoerle S, Poestgens H, Schmidt J, Kroll P (2002) Effect of pars plana vitrectomy for proliferative diabetic vitreoretinopathy on preexisting diabetic maculopathy. Graefes Arch Clin Exp Ophthalmol 240(3):197–201, doi:10.1007/s00417-002-0432-8

    Article  PubMed  Google Scholar 

  66. Terasaki H, Kojima T, Niwa H, Piao CH, Ueno S, Kondo M et al (2003) Changes in focal macular electroretinograms and foveal thickness after vitrectomy for diabetic macular edema. Invest Ophthalmol Vis Sci 44(10):4465–4472, doi:10.1167/iovs.02-1313

    Article  PubMed  Google Scholar 

  67. Yamamoto S, Yamamoto T, Ogata K, Hoshino A, Sato E, Mizunoya S (2004) Morphological and functional changes of the macula after vitrectomy and creation of posterior vitreous detachment in eyes with diabetic macular edema. Doc Ophthalmol 109(3):249–253, doi:10.1007/s10633-004-8056-4

    Article  PubMed  Google Scholar 

  68. Shah SP, Patel M, Thomas D, Aldington S, Laidlaw DA (2006) Factors predicting outcome of vitrectomy for diabetic macular oedema: results of a prospective study. Br J Ophthalmol 90(1):33–36, doi:10.1136/bjo.2005.072934

    Article  PubMed  CAS  Google Scholar 

  69. Meyer CH (2007) Current treatment approaches in diabetic macular edema. Ophthalmologica 221(2):118–131, doi:10.1159/000098257

    Article  PubMed  Google Scholar 

  70. Soliman W, Sander B, Soliman KA, Yehya S, Rahamn MS, Larsen M (2008) The predictive value of optical coherence tomography after grid laser photocoagulation for diffuse diabetic macular oedema. Acta Ophthalmol (Copenh) 86(3):284–291, doi:10.1111/j.1600-0420.2007.01048.x

    Article  Google Scholar 

  71. Arnarsson A, Stefansson E (2000) Laser treatment and the mechanism of edema reduction in branch retinal vein occlusion. Invest Ophthalmol Vis Sci 41(3):877–879

    PubMed  CAS  Google Scholar 

  72. Feke GT, Green GJ, Goger DG, McMeel JW (1982) Laser Doppler measurements of the effect of panretinal photocoagulation on retinal blood flow. Ophthalmology 89(7):757–762

    PubMed  CAS  Google Scholar 

  73. Gottfredsdottir MS, Stefansson E, Jonasson F, Gislason I (1993) Retinal vasoconstriction after laser treatment for diabetic macular edema. Am J Ophthalmol 115(1):64–67

    PubMed  CAS  Google Scholar 

  74. Wilson CA, Stefansson E, Klombers L, Hubbard LD, Kaufman SC, Ferris FL 3rd (1988) Optic disk neovascularization and retinal vessel diameter in diabetic retinopathy. Am J Ophthalmol 106(2):131–134

    PubMed  CAS  Google Scholar 

  75. Hikichi T, Yoshida A, Konno S, Trempe CL (1996) Role of the vitreous in central retinal vein occlusion. Nippon Ganka Gakkai Zasshi 100(1):63–68

    PubMed  CAS  Google Scholar 

  76. Takahashi MK, Hikichi T, Akiba J, Yoshida A, Trempe CL (1997) Role of the vitreous and macular edema in branch retinal vein occlusion. Ophthalmic Surg Lasers 28(4):294–299

    PubMed  CAS  Google Scholar 

  77. Charbonnel J, Glacet-Bernard A, Korobelnik JF, Nyouma-Moune E, Pournaras CJ, Colin J et al (2004) Management of branch retinal vein occlusion with vitrectomy and arteriovenous adventitial sheathotomy, the possible role of surgical posterior vitreous detachment. Graefes Arch Clin Exp Ophthalmol 242(3):223–228, doi:10.1007/s00417-003-0824-4

    Article  PubMed  Google Scholar 

  78. Kumagai K, Furukawa M, Ogino N, Uemura A, Larson E (2007) Long-term outcomes of vitrectomy with or without arteriovenous sheathotomy in branch retinal vein occlusion. Retina 27(1):49–54, doi:10.1097/01.iae.0000221996.77421.69

    Article  PubMed  Google Scholar 

  79. Hvarfner C, Larsson J (2006) Vitrectomy for non-ischaemic macular oedema in retinal vein occlusion. Acta Ophthalmol Scand 84(6):812–814, doi:10.1111/j.1600-0420.2006.00749.x

    Article  PubMed  Google Scholar 

  80. Newton I (1726) Philosophiæ naturalis principia mathematica. Editio tertia aucta et emendata. Regia Societas, London, p 14

    Google Scholar 

  81. Newton I (1999) The Principia: Mathematical Principles of Natural Philosophy. A new Translation by I. Bernard Cohen and Anne Whitman. University of California Press, Berkely, p 417

    Google Scholar 

  82. Pocock G, Richards CD (2004) Human physiology. The basis of medicine, 2nd edn ed. Oxford University Press Inc., New York

    Google Scholar 

  83. Cunha-Vaz J (1979) The blood-ocular barriers. Surv Ophthalmol 23(5):279–296, doi:10.1016/0039-6257(79)90158-9

    Article  PubMed  CAS  Google Scholar 

  84. Cunha-Vaz JG, Travassos A (1984) Breakdown of the blood-retinal barriers and cystoid macular edema. Surv Ophthalmol 28(Suppl):485–492, doi:10.1016/0039-6257(84)90230-3

    Article  PubMed  Google Scholar 

  85. Bringmann A, Uckermann O, Pannicke T, Iandiev I, Reichenbach A, Wiedemann P (2005) Neuronal versus glial cell swelling in the ischaemic retina. Acta Ophthalmol Scand 83(5):528–538, doi:10.1111/j.1600-0420.2005.00565.x

    Article  PubMed  Google Scholar 

  86. Massin P, Girach A, Erginay A, Gaudric A (2006) Optical coherence tomography: a key to the future management of patients with diabetic macular oedema. Acta Ophthalmol Scand 84(4):466–474, doi:10.1111/j.1600-0420.2006.00694.x

    Article  PubMed  Google Scholar 

  87. Stefansson E, Wilson CA, Lightman SL, Kuwabara T, Palestine AG, Wagner HG (1987) Quantitative measurements of retinal edema by specific gravity determinations. Invest Ophthalmol Vis Sci 28(8):1281–1289

    PubMed  CAS  Google Scholar 

  88. Knudsen LL (2007) Identification of diabetic macular oedema using retinal thickness measurements. Acta Ophthalmol Scand 85(1):27–31, doi:10.1111/j.1600-0420.2006.00783.x

    Article  PubMed  Google Scholar 

  89. Neubauer AS, Chryssafis C, Priglinger SG, Haritoglou C, Thiel M, Welge-Lussen U et al (2007) Topography of diabetic macular oedema compared with fluorescein angiography. Acta Ophthalmol Scand 85(1):32–39, doi:10.1111/j.1600-0420.2006.00727.x

    Article  PubMed  Google Scholar 

  90. Soliman W, Sander B, Jorgensen TM (2007) Enhanced optical coherence patterns of diabetic macular oedema and their correlation with the pathophysiology. Acta Ophthalmol Scand 85(6):613–617, doi:10.1111/j.1600-0420.2007.00917.x

    Article  PubMed  Google Scholar 

  91. Klein R, Klein BE, Moss SE, Cruickshanks KJ (1995) The Wisconsin Epidemiologic Study of Diabetic Retinopathy. XV. The long-term incidence of macular edema. Ophthalmology 102(1):7–16

    PubMed  CAS  Google Scholar 

  92. Lopes de Faria JM, Jalkh AE, Trempe CL, McMeel JW (1999) Diabetic macular edema: risk factors and concomitants. Acta Ophthalmol Scand 77(2):170–175, doi:10.1034/j.1600-0420.1999.770211.x

    Article  PubMed  CAS  Google Scholar 

  93. Matthews DR, Stratton IM, Aldington SJ, Holman RR, Kohner EM (2004) Risks of progression of retinopathy and vision loss related to tight blood pressure control in type 2 diabetes mellitus: UKPDS 69. Arch Ophthalmol 122(11):1631–1640, doi:10.1001/archopht.122.11.1631

    Article  PubMed  Google Scholar 

  94. Higgins GT, Khan J, Pearce IA (2007) Glycaemic control and control of risk factors in diabetes patients in an ophthalmology clinic: what lessons have we learned from the UKPDS and DCCT studies. Acta Ophthalmol Scand 85(7):772–776, doi:10.1111/j.1600-0420.2007.00944.x

    Article  PubMed  Google Scholar 

  95. Stefansson E (2001) The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand 79(5):435–440, doi:10.1034/j.1600-0420.2001.790502.x

    CAS  Google Scholar 

  96. Kristinsson JK, Gottfredsdottir MS, Stefansson E (1997) Retinal vessel dilatation and elongation precedes diabetic macular oedema. Br J Ophthalmol 81(4):274–278

    Article  PubMed  CAS  Google Scholar 

  97. Stefansson E, Landers MB 3rd, Wolbarsht ML (1983) Oxygenation and vasodilatation in relation to diabetic and other proliferative retinopathies. Ophthalmic Surg 14(3):209–226

    PubMed  CAS  Google Scholar 

  98. Kokame GT, de Leon MD, Tanji T (2001) Serous retinal detachment and cystoid macular edema in hypotony maculopathy. Am J Ophthalmol 131(3):384–386, doi:10.1016/S0002-9394(00)00794-7

    Article  PubMed  CAS  Google Scholar 

  99. Schubert HD (1996) Postsurgical hypotony: relationship to fistulization, inflammation, chorioretinal lesions, and the vitreous. Surv Ophthalmol 41(2):97–125, doi:10.1016/S0039-6257(96)80001-4

    Article  PubMed  CAS  Google Scholar 

  100. Stefansson E (2007) Ocular hypotony: what is the mechanism of effusion and oedema? Acta Ophthalmol Scand 85(6):584–585, doi:10.1111/j.1600-0420.2007.01032.x

    Article  PubMed  Google Scholar 

  101. Funatsu H, Yamashita H, Nakamura S, Mimura T, Eguchi S, Noma H et al (2006) Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmology 113(2):294–301, doi:10.1016/j.ophtha.2005.10.030

    Article  PubMed  Google Scholar 

  102. Patel JI, Tombran-Tink J, Hykin PG, Gregor ZJ, Cree IA (2006) Vitreous and aqueous concentrations of proangiogenic, antiangiogenic factors and other cytokines in diabetic retinopathy patients with macular edema: Implications for structural differences in macular profiles. Exp Eye Res 82(5):798–806, doi:10.1016/j.exer.2005.10.002

    Article  PubMed  CAS  Google Scholar 

  103. Knudsen ST, Bek T, Poulsen PL, Hove MN, Rehling M, Mogensen CE (2002) Macular edema reflects generalized vascular hyperpermeability in type 2 diabetic patients with retinopathy. Diabetes Care 25(12):2328–2334, doi:10.2337/diacare.25.12.2328

    Article  PubMed  Google Scholar 

  104. Cunha-Vaz JG (1985) Vitreous fluorophotometry recordings in posterior segment disease. Graefes Arch Clin Exp Ophthalmol 222(4–5):241–247, doi:10.1007/BF02133688

    Article  PubMed  CAS  Google Scholar 

  105. Krogsaa B, Lund-Andersen H, Mehlsen J, Sestoft L (1987) Blood-retinal barrier permeability versus diabetes duration and retinal morphology in insulin dependent diabetic patients. Acta Ophthalmol (Copenh) 65(6):686–692

    CAS  Google Scholar 

  106. Phillips RP, Ross PG, Sharp PF, Forrester JV (1990) Use of temporal information to quantify vascular leakage in fluorescein angiography of the retina. Clin Phys Physiol Meas 11(Suppl A):81–85

    Article  PubMed  Google Scholar 

  107. Ring K, Larsen M, Dalgaard P, Andersen HL (1987) Fluorophotometric evaluation of ocular barriers and of the vitreous body in the aphakic eye. Acta Ophthalmol Suppl 182:160–162

    PubMed  CAS  Google Scholar 

  108. Sander B, Larsen M, Moldow B, Lund-Andersen H (2001) Diabetic macular edema: passive and active transport of fluorescein through the blood-retina barrier. Invest Ophthalmol Vis Sci 42(2):433–438

    PubMed  CAS  Google Scholar 

  109. Smith RT, Lee CM, Charles HC, Farber M, Cunha-Vaz JG (1987) Quantification of diabetic macular edema. Arch Ophthalmol 105(2):218–222

    PubMed  CAS  Google Scholar 

  110. Stratton IM, Kohner EM, Aldington SJ, Turner RC, Holman RR, Manley SE et al (2001) UKPDS 50: risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia 44(2):156–163, doi:10.1007/s001250051594

    Article  PubMed  CAS  Google Scholar 

  111. Averous K, Erginay A, Timsit J, Haouchine B, Gaudric A, Massin P (2006) Resolution of diabetic macular oedema following high altitude exercise. Acta Ophthalmol Scand 84(6):830–831, doi:10.1111/j.1600-0420.2006.00701.x

    Article  PubMed  Google Scholar 

  112. Nguyen QD, Shah SM, Van Anden E, Sung JU, Vitale S, Campochiaro PA (2004) Supplemental oxygen improves diabetic macular edema: a pilot study. Invest Ophthalmol Vis Sci 45(2):617–624, doi:10.1167/iovs.03-0557

    Article  PubMed  Google Scholar 

  113. Kiryu J, Ogura Y (1996) Hyperbaric oxygen treatment for macular edema in retinal vein occlusion: relation to severity of retinal leakage. Ophthalmologica 210(3):168–170

    Article  PubMed  CAS  Google Scholar 

  114. Roy M, Bartow W, Ambrus J, Fauci A, Collier B, Titus J (1989) Retinal leakage in retinal vein occlusion: reduction after hyperbaric oxygen. Ophthalmologica 198(2):78–83

    PubMed  CAS  Google Scholar 

  115. Jacobi KW, Kluge K (1972) Measuring of oxygen partial pressure before the retina following photocoagulation]. Ber Zusammenkunft Dtsch Ophthalmol Ges 71:397–401

    PubMed  CAS  Google Scholar 

  116. Maeda N, Tano Y, Ikeda T, Imai T, Hamano H, Manabe R (1992) [Vitreous oxygen tension of proliferative diabetic retinopathy]. Nippon Ganka Gakkai Zasshi 96(4):511–515

    PubMed  CAS  Google Scholar 

  117. Soliman W, Vinten M, Sander B, Soliman KA, Yehya S, Rahman MS et al (2008) Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema. Acta Ophthalmol (Copenh) 86(4):365–371, doi:10.1111/j.1600-0420.2007.01057.x

    Article  Google Scholar 

  118. Vinten M, Larsen M, Lund-Andersen H, Sander B, La Cour M (2007) Short-term effects of intravitreal triamcinolone on retinal vascular leakage and trunk vessel diameters in diabetic macular oedema. Acta Ophthalmol Scand 85(1):21–26, doi:10.1111/j.1600-0420.2006.00806.x

    Article  PubMed  CAS  Google Scholar 

  119. Christoffersen N, Larsen M (2004) Unilateral diabetic macular oedema secondary to central retinal vein congestion. Acta Ophthalmol Scand 82(5):591–595, doi:10.1111/j.1600-0420.2004.00326.x

    Article  PubMed  Google Scholar 

  120. Kylstra JA, Wierzbicki T, Wolbarsht ML, Landers MB 3rd, Stefansson E (1986) The relationship between retinal vessel tortuosity, diameter, and transmural pressure. Graefes Arch Clin Exp Ophthalmol 224(5):477–480, doi:10.1007/BF02173368

    Article  PubMed  CAS  Google Scholar 

  121. Larsen M (2005) Unilateral macular oedema secondary to retinal venous congestion without occlusion in patients with diabetes mellitus. Acta Ophthalmol Scand 83(4):428–435, doi:10.1111/j.1395-3907.2005.00478.x

    Article  PubMed  Google Scholar 

  122. Sohn JH, Song SJ (2006) Arteriovenous sheathotomy for persistent macular edema in branch retinal vein occlusion. Korean J Ophthalmol 20(4):210–214

    Article  PubMed  Google Scholar 

  123. Wrigstad A, Algvere P (2006) Arteriovenous adventitial sheathotomy for branch retinal vein occlusion: report of a case with longterm follow-up. Acta Ophthalmol Scand 84(5):699–702, doi:10.1111/j.1600-0420.2006.00697.x

    Article  PubMed  Google Scholar 

  124. Crafoord S, Karlsson N, la Cour M (2008) Sheathotomy in complicated cases of branch retinal vein occlusion. Acta Ophthalmol (Copenh) 86(2):146–150, doi:10.1111/j.1600-0420.2007.00998.x

    Article  Google Scholar 

  125. Mandelcorn MS, Mandelcorn E, Guan K, Adatia FA (2007) Surgical macular decompression for macular edema in retinal vein occlusion. Can J Ophthalmol 42(1):116–122, doi:10.3129/can j ophthalmol.06–091

    Article  PubMed  Google Scholar 

  126. Shimura M, Nakazawa T, Yasuda K, Kunikata H, Shiono T, Nishida K (2008) Visual prognosis and vitreous cytokine levels after arteriovenous sheathotomy in branch retinal vein occlusion associated with macular oedema. Acta Ophthalmol (Copenh) 86(4):377–384, doi:10.1111/j.1600-0420.2007.01074.x

    Article  CAS  Google Scholar 

  127. Karasheva G, Goebel W, Klink T, Haigis W, Grehn F (2003) Changes in macular thickness and depth of anterior chamber in patients after filtration surgery. Graefes Arch Clin Exp Ophthalmol 241(3):170–175, doi:10.1007/s00417-003-0628-6

    Article  PubMed  Google Scholar 

  128. Iturralde D, Spaide RF, Meyerle CB, Klancnik JM, Yannuzzi LA, Fisher YL et al (2006) Intravitreal bevacizumab (Avastin) treatment of macular edema in central retinal vein occlusion: a short-term study. Retina 26(3):279–284, doi:10.1097/00006982-200603000-00005

    Article  PubMed  Google Scholar 

  129. Mason JO 3rd, Albert MA Jr, Vail R (2006) Intravitreal bevacizumab (Avastin) for refractory pseudophakic cystoid macular edema. Retina 26(3):356–357, doi:10.1097/00006982-200603000-00018

    Article  PubMed  Google Scholar 

  130. Audren F, Erginay A, Haouchine B, Benosman R, Conrath J, Bergmann JF et al (2006) Intravitreal triamcinolone acetonide for diffuse diabetic macular oedema: 6-month results of a prospective controlled trial. Acta Ophthalmol Scand 84(5):624–630, doi:10.1111/j.1600-0420.2006.00700.x

    Article  PubMed  CAS  Google Scholar 

  131. Edelman JL, Lutz D, Castro MR (2005) Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retinal and blood-aqueous barrier breakdown. Exp Eye Res 80(2):249–258, doi:10.1016/j.exer.2004.09.013

    Article  PubMed  CAS  Google Scholar 

  132. Jonas JB (2005) Intravitreal triamcinolone acetonide for treatment of intraocular oedematous and neovascular diseases. Acta Ophthalmol Scand 83(6):645–663, doi:10.1111/j.1600-0420.2005.00592.x

    Article  PubMed  Google Scholar 

  133. Sorensen TL, Haamann P, Villumsen J, Larsen M (2005) Intravitreal triamcinolone for macular oedema: efficacy in relation to aetiology. Acta Ophthalmol Scand 83(1):67–70, doi:10.1111/j.1600-0420.2004.00336.x

    Article  PubMed  CAS  Google Scholar 

  134. Margolis R, Singh RP, Bhatnagar P, Kaiser PK (2008) Intravitreal triamcinolone as adjunctive treatment to laser panretinal photocoagulation for concomitant proliferative diabetic retinopathy and clinically significant macular oedema. Acta Ophthalmol (Copenh) 86(1):105–110

    Google Scholar 

  135. Sivaprasad S, McCluskey P, Lightman S (2006) Intravitreal steroids in the management of macular oedema. Acta Ophthalmol Scand 84(6):722–733, doi:10.1111/j.1600-0420.2006.00698.x

    Article  PubMed  CAS  Google Scholar 

  136. Wang L, Song H (2008) Effects of repeated injection of intravitreal triamcinolone on macular oedema in central retinal vein occlusion. Acta Ophthalmol [Epub ahead of print May 27]

  137. Vinores SA, Xiao WH, Aslam S, Shen J, Oshima Y, Nambu H et al (2006) Implication of the hypoxia response element of the Vegf promoter in mouse models of retinal and choroidal neovascularization, but not retinal vascular development. J Cell Physiol 206(3):749–758, doi:10.1002/jcp.20525

    Article  PubMed  CAS  Google Scholar 

  138. Krebs I, Brannath W, Glittenberg C, Zeiler F, Sebag J, Binder S (2007) Posterior vitreomacular adhesion: a potential risk factor for exudative age-related macular degeneration. Am J Ophthalmol 144(5):741–746, doi:10.1016/j.ajo.2007.07.024

    Article  PubMed  Google Scholar 

  139. Weber-Krause B, Eckardt U (1996) Incidence of posterior vitreous detachment in eyes with and without age-related macular degeneration. An ultrasonic study. Ophthalmologe 93(6):660–665, doi:10.1007/s003470050054

    Article  PubMed  CAS  Google Scholar 

  140. Ondes F, Yilmaz G, Acar MA, Unlu N, Kocaoglan H, Arsan AK (2000) Role of the vitreous in age-related macular degeneration. Jpn J Ophthalmol 44(1):91–93, doi:10.1016/S0021-5155(99)00174-4

    Article  PubMed  CAS  Google Scholar 

  141. Hayreh SS, Jonas JB (2004) Posterior vitreous detachment: clinical correlations. Ophthalmologica 218(5):333–343, doi:10.1159/000079476

    Article  PubMed  Google Scholar 

  142. Lambert HM, Capone A Jr, Aaberg TM, Sternberg P Jr, Mandell BA, Lopez PF (1992) Surgical excision of subfoveal neovascular membranes in age-related macular degeneration. Am J Ophthalmol 113(3):257–262

    PubMed  CAS  Google Scholar 

  143. Schmidt JC, Mennel S, Horle S, Meyer CH (2006) High incidence of vitreomacular traction in recurrent choroidal neovascularisation after repeated photodynamic therapy. Br J Ophthalmol 90(11):1361–1362, doi:10.1136/bjo.2006.094201

    Article  PubMed  CAS  Google Scholar 

  144. Meyer CH, Toth CA (2001) Retinal pigment epithelial tear with vitreomacular attachment: a novel pathogenic feature. Graefes Arch Clin Exp Ophthalmol 239(5):325–333, doi:10.1007/s004170100259

    Article  PubMed  CAS  Google Scholar 

  145. Gross-Jendroska M, Flaxel CJ, Schwartz SD, Holz FG, Fitzke FW, Gabel VP et al (1998) Treatment of pigment epithelial detachments due to age-related macular degeneration with intra-ocular C3F8 injection. Aust N Z J Ophthalmol 26(4):311–317, doi:10.1111/j.1442-9071.1998.tb01335.x

    Article  PubMed  CAS  Google Scholar 

  146. Liang J, Zheng L, Yi C, Barbazetto I, Dillon J (2002) Affection on oxygen tension of the lens after vitrectomy. Yan Ke Xue Bao 18(2):67–70

    PubMed  Google Scholar 

  147. Holekamp NM, Shui YB, Beebe D (2006) Lower intraocular oxygen tension in diabetic patients: possible contribution to decreased incidence of nuclear sclerotic cataract. Am J Ophthalmol 141(6):1027–1032, doi:10.1016/j.ajo.2006.01.016

    Article  PubMed  Google Scholar 

  148. Chauvaud D, Clay-Fressinet C, Pouliquen Y, Offret G (1976) Opacification of the crystalline lens after trabeculectomy. Study of 95 cases. Arch Ophtalmol (Paris) 36(5):379–386

    CAS  Google Scholar 

  149. Daugeliene L, Yamamoto T, Kitazawa Y (2000) Cataract development after trabeculectomy with mitomycin C: a 1-year study. Jpn J Ophthalmol 44(1):52–57, doi:10.1016/S0021-5155(99)00145-8

    Article  PubMed  CAS  Google Scholar 

  150. Popovic V, Sjostrand J (1991) Long-term outcome following trabeculectomy: I Retrospective analysis of intraocular pressure regulation and cataract formation. Acta Ophthalmol (Copenh) 69(3):299–304

    CAS  Google Scholar 

  151. Quigley HA, Buhrmann RR, West SK, Isseme I, Scudder M, Oliva MS (2000) Long term results of glaucoma surgery among participants in an east African population survey. Br J Ophthalmol 84(8):860–864, doi:10.1136/bjo.84.8.860

    Article  PubMed  CAS  Google Scholar 

  152. Razzak A, al Samarrai A, Sunba MS (1991) Incidence of posttrabeculectomy cataract among Arabs in Kuwait. Ophthalmic Res 23(1):21–23

    Article  PubMed  CAS  Google Scholar 

  153. Sihota R, Gupta V, Agarwal HC (2004) Long-term evaluation of trabeculectomy in primary open angle glaucoma and chronic primary angle closure glaucoma in an Asian population. Clin Experiment Ophthalmol 32(1):23–28, doi:10.1046/j.1442-9071.2004.00752.x

    Article  PubMed  Google Scholar 

  154. Vesti E (1993) Development of cataract after trabeculectomy. Acta Ophthalmol (Copenh) 71(6):777–781

    Article  CAS  Google Scholar 

  155. Chang S (2006) LXII Edward Jackson lecture: open angle glaucoma after vitrectomy. Am J Ophthalmol 141(6):1033–1043, doi:10.1016/j.ajo.2006.02.014

    Article  PubMed  Google Scholar 

  156. Helbig H, Noske W, Kellner U, Foerster MH (1995) Oxygen in the anterior chamber before and after cataract operation. Ophthalmologe 92(3):325–328

    PubMed  CAS  Google Scholar 

  157. Helbig H, Schlotzer-Schrehardt U, Noske W, Kellner U, Foerster MH, Naumann GO (1994) Anterior-chamber hypoxia and iris vasculopathy in pseudoexfoliation syndrome. Ger J Ophthalmol 3(3):148–153

    PubMed  CAS  Google Scholar 

  158. Sakaue H, Tsukahara Y, Negi A, Ogino N, Honda Y (1989) Measurement of vitreous oxygen tension in human eyes. Jpn J Ophthalmol 33(2):199–203

    PubMed  CAS  Google Scholar 

  159. Wilson CA, Berkowitz BA, McCuen BW 2nd, Charles HC (1992) Measurement of preretinal oxygen tension in the vitrectomized human eye using fluorine-19 magnetic resonance spectroscopy. Arch Ophthalmol 110(8):1098–1100

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Mr. Arni Corlett drew the schematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einar Stefánsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefánsson, E. Physiology of vitreous surgery. Graefes Arch Clin Exp Ophthalmol 247, 147–163 (2009). https://doi.org/10.1007/s00417-008-0980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-0980-7

Keywords

Navigation