Skip to main content

Advertisement

Log in

Contribution of the clock gene DEC2 to VEGF mRNA upregulation by modulation of HIF1α protein levels in hypoxic MIO-M1 cells, a human cell line of retinal glial (Müller) cells

  • Laboratory Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Clock genes are components of the molecular clock. Their malfunction is thought to increase the risk of numerous diseases, including cancer. Vascular endothelial growth factor (VEGF) has a pivotal role in angiogenesis, and its expression levels are controlled by clock genes in tumor cells. Ophthalmic diseases such as age-related macular degeneration, proliferative diabetic retinopathy, and neovascular glaucoma are also associated with abnormal angiogenesis followed by upregulation of VEGF in the eye. In the present study, we aimed to uncover the relationship between clock genes and VEGF in the eye.

Study design

Laboratory investigation

Methods

Oxygen-induced retinopathy (OIR) mice were prepared to mimic hypoxic conditions in the eye. Deferoxamine (DFO) was used to mimic hypoxic conditions in human Müller cell line MIO-M1 cells. Expression levels of mRNA and protein were quantified by quantitative reverse transcription polymerase chain reaction and Western blot analysis, respectively.

Results

In the retinas of OIR mice, the expression levels of Vegf and the clock gene Dec2 increased transiently, and their temporal profiles were correlated. Knockdown of DEC2 resulted in a significant (26.7%) reduction of VEGF expression in MIO-M1 cells under hypoxia-mimicking conditions induced by DFO (P < .05). Levels of HIF1α protein were also reduced significantly, by 60.2%, in MIO-M1 cells treated with siRNA against the DEC2 gene (P < .05). Moreover, HIF1α levels showed a significant (2.5-fold) increase in MIO-M1 cells overexpressing DEC2 (P < .05).

Conclusion

DEC2 could upregulate retinal VEGF gene expression through modulation of HIF1α levels under hypoxic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10:145–7.

    Article  CAS  Google Scholar 

  2. Gariano RF, Gardner TW. Retinal angiogenesis in development and disease. Nature. 2004;438:960–6.

    Article  Google Scholar 

  3. Osaadon P, Fagan X, Lifshitz T, Levy J. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye. 2014;28:510–20.

    Article  CAS  Google Scholar 

  4. SooHoo JR, Seibold LK, Kahook MY. Recent advances in the management of neovascular glaucoma. Ophthalmol. 2013;28:165–72.

    Google Scholar 

  5. Kimoto K, Kubota T. Anti-VEGF agents for ocular angiogenesis and vascular permeability. J Ophthalmol. 2012;2012:852183.

    PubMed  Google Scholar 

  6. Selvaraj K, Gowthamarajan K, Karri VVSR, Barauah UK, Ravisankar V, Jojo GM. Current treatment strategies and nanocarrier based approaches for the treatment and management of diabetic retinopathy. J Drug Target. 2017;25:386–405.

    Article  CAS  Google Scholar 

  7. Hamet P, Tremblay J. Genetics of the sleep-wake cycle and its disorders. Metab Clin Exp. 2006;55:S7–12.

    Article  CAS  Google Scholar 

  8. Ohdo S. Chronopharmacology focused on biological clock. Drug Metab Pharmacokinet. 2007;22:3–14.

    Article  CAS  Google Scholar 

  9. Koyanagi S, Kusunose N, Taniguchi M, Akamine T, Kanado Y, Ozono Y, et al. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nat Commun. 2016;7:13102.

    Article  CAS  Google Scholar 

  10. Okamura H, Yamaguchi S, Yagita K. Molecular machinery of the circadian clock in mammals. Cell Tissue Res. 2002;309:47–56.

    Article  CAS  Google Scholar 

  11. Ueda HR, Iino M, Machida M, Sano M, Hayashi S, Hashimoto S, et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet. 2005;37:187.

    Article  CAS  Google Scholar 

  12. Hastings MH, Reddy AB, Maywood ES. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev. 2003;4:649–61.

    Article  CAS  Google Scholar 

  13. Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, et al. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature. 2002;419:841–4.

    Article  CAS  Google Scholar 

  14. He Y, Jones CR, Fujiki N, Xu Y, Guo B, Holder JL, et al. The transcriptional repressor DEC2 regulates sleep length in mammals. Science. 2009;325:866–70.

    Article  CAS  Google Scholar 

  15. Sato F, Bhawal UK, Yoshimura T, Muragaki Y. DEC1 and DEC2 crosstalk between circadian rhythm and tumor progression. J Cancer. 2016;7:153–9.

    Article  CAS  Google Scholar 

  16. Sato F, Bhawal UK, Kawamoto T, Fujimoto K, Imaizumi T, Imanaka T, et al. Basic-helix-loop-helix (bHLH) transcription factor DEC2 negatively regulates vascular endothelial growth factor expression. Genes Cells. 2008;13:131–44.

    Article  CAS  Google Scholar 

  17. Koyanagi S, Kuramoto Y, Nakagawa H, Aramaki H, Ohdo S, Soeda S, et al. A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res. 2003;63:7277–83.

    CAS  PubMed  Google Scholar 

  18. Nakama T, Yoshida S, Ishikawa K, Kobayashi Y, Abe T, Kiyonari H, et al. Different roles played by periostin splice variants in retinal neovascularization. Exp Eye Res. 2016;153:133–40.

    Article  CAS  Google Scholar 

  19. Ren H, Thiersch M, Grimm C. Mimicking hypoxia by the chemical stabilization of Hif-1α in the mouse retina. Invest Ophthalmol Vis Sci. 2007;48:625.

    Google Scholar 

  20. Semenza GL. Hypoxia-inducible factor 1: control of oxygen homeostasis in health and disease. Pediatr Res. 2001;49:614–7.

    Article  CAS  Google Scholar 

  21. Nürnberg C, Kociok N, Brockmann C, Lischke T, Crespo-Garcia S, Reichhart N, et al. Myeloid cells contribute indirectly to VEGF expression upon hypoxia via activation of Müller cells. Exp Eye Res. 2018;166:56–69.

    Article  Google Scholar 

  22. Zhang SX, Wang JJ, Gao G, Parke K, Ma JX. Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy. J Mol Endocrinol. 2006;37:1–12.

    Article  Google Scholar 

  23. Chen S, Sang N. Histone deacetylase inhibitors: the epigenetic therapeutics that repress hypoxia-inducible factors. J Biomed Biotechnol. 2011;2011:197946.

    PubMed  Google Scholar 

  24. Joshi S, Singh AR, Durden DL. MDM2 regulates hypoxic hypoxia-inducible factor 1alpha stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner. J Biol Chem. 2014;289:22785–97.

    Article  CAS  Google Scholar 

  25. Kim EJ, Yoo YG, Yang WK, Lim YS, Na TY, Lee IK, et al. Transcriptional activation of HIF-1 by RORalpha and its role in hypoxia signaling. Arterioscler Thromb Vasc Biol. 2008;28:1796–802.

    Article  CAS  Google Scholar 

  26. Akashi M, Okamoto A, Tsuchiya Y, Todo T, Nishida E, Node K. A positive role for PERIOD in mammalian circadian gene expression. Cell Rep. 2014;7:1056–64.

    Article  CAS  Google Scholar 

  27. Eckle T, Hartmann K, Bonney S, Reithel S, Mittelbronn M, Walker LA, et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med. 2012;18:774–82.

    Article  CAS  Google Scholar 

  28. Kobayashi M, Morinibu A, Koyasu S, Goto Y, Hiraoka M, Harada H. A circadian clock gene, PER2, activates HIF-1 as an effector molecule for recruitment of HIF-1α to promoter regions of its downstream genes. FEBS J. 2017;284:3804–16.

    Article  CAS  Google Scholar 

  29. Montagner M, Enzo E, Forcato M, Zanconato F, Parenti A, Rampazzo E, et al. SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature. 2012;487:380–4.

    Article  CAS  Google Scholar 

  30. Hu T, He N, Yang Y, Yin C, Sang N, Yang Q. DEC2 expression is positively correlated with HIF-1 activation and the invasiveness of human osteosarcomas. J Exp Clin Cancer Res. 2015;34:22.

    Article  CAS  Google Scholar 

  31. Wu Y, Sato H, Suzuki T, Yoshizawa T, Morohashi S, Seino H, et al. Involvement of c-myc in the proliferation of MCF-7 human breast cancer cells induced by bHLH transcription factor DEC2. Int J Mol Med. 2015;35:815–20.

    Article  CAS  Google Scholar 

  32. Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ, Krah NM, et al. The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci. 2010;51:2813–26.

    Article  Google Scholar 

  33. Olkkonen J, Kouri V, Hynninen J, Konttinen YT, Mandelin J. Differentially expressed in chondrocytes 2 (DEC2) increases the expression of IL-1β and is abundantly present in synovial membrane in rheumatoid arthritis. PloS One. 2015;10:e0145279.

    Article  Google Scholar 

  34. Kaštelan S, Tomić M, Gverović Antunica A, Salopek Rabatić J, Ljubić S. Inflammation and pharmacological treatment in diabetic retinopathy. Mediators Inflamm. 2013;2013:213130.

    PubMed  PubMed Central  Google Scholar 

  35. Juel HB, Faber C, Udsen MS, Folkersen L, Nissen MH. Chemokine expression in retinal pigment epithelial ARPE-19 cells in response to coculture with activated T Cells. Invest Ophthalmol Vis Sci. 2012;53:8472–80.

    Article  CAS  Google Scholar 

  36. Mahoney MM. Shift work, jet lag, and female reproduction. Int J Endocrinol. 2010;2010:813764.

    Article  Google Scholar 

  37. Haus E, Smolensky M. Biological clocks and shift work: circadian dysregulation and potential long-term effects. Cancer Causes Control. 2006;17:489–500.

    Article  Google Scholar 

  38. Myers BL, Badia P. Changes in circadian rhythms and sleep quality with aging: mechanisms and interventions. Neurosci Biobehav Rev. 1995;19:553–71.

    Article  CAS  Google Scholar 

  39. Kusunose N, Matsunaga N, Kimoto K, Akamine T, Hamamura K, Koyanagi S, et al. Mitomycin C modulates the circadian oscillation of clock gene period 2 expression through attenuating the glucocorticoid signaling in mouse fibroblasts. Biochem Biophys Res Commun. 2015;467:157–63.

    Article  CAS  Google Scholar 

  40. Lim F, Currie R, Orphanides G, Moggs J. Emerging evidence for the interrelationship of xenobiotic exposure and circadian rhythms: a review. Xenobiotica. 2006;36:1140–51.

    Article  CAS  Google Scholar 

  41. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001;291:1040–3.

    Article  CAS  Google Scholar 

  42. Takeda N, Maemura K. The role of clock genes and circadian rhythm in the development of cardiovascular diseases. Cell Mol Life Sci. 2015;72:3225–34.

    Article  CAS  Google Scholar 

  43. Takahashi JS, Hong H, Ko CH, McDearmon EL. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet. 2008;9:764–75.

    Article  CAS  Google Scholar 

  44. Wang Q, Tikhonenko M, Bozack SN, Lydic TA, Yan L, Panchy NL, et al. Changes in the daily rhythm of lipid metabolism in the diabetic retina. PLoS One. 2014;9:e95028.

    Article  Google Scholar 

  45. Wang Q, Bozack SN, Yan Y, Boulton ME, Grant MB, Busik JV. Regulation of retinal inflammation by rhythmic expression of MiR-146a in diabetic retina. Invest Ophthalmol Vis Sci. 2014;55:3986–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Young Scientists (B) (no. 26861456) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Kusunose.

Ethics declarations

Conflicts of interest

N. Kusunose, None; T. Akamine, None; Y. Kobayashi, None; S. Yoshida, None; K. Kimoto, None; S. Yasukochi, None; N. Matsunaga, None; S. Koyanagi, None; S. Ohdo, None; T. Kubota, None.

Additional information

Corresponding author: Naoki Kusunose

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 1405 kb)

Supplementary material 2 (JPEG 1753 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusunose, N., Akamine, T., Kobayashi, Y. et al. Contribution of the clock gene DEC2 to VEGF mRNA upregulation by modulation of HIF1α protein levels in hypoxic MIO-M1 cells, a human cell line of retinal glial (Müller) cells. Jpn J Ophthalmol 62, 677–685 (2018). https://doi.org/10.1007/s10384-018-0622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-018-0622-5

Keywords

Navigation