Skip to main content
Log in

The role of clock genes and circadian rhythm in the development of cardiovascular diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The time of onset of cardiovascular disorders such as myocardial infarctions or ventricular arrhythmias exhibits a circadian rhythm. Diurnal variations in autonomic nervous activity, plasma cortisol level or renin–angiotensin activity underlie the pathogenesis of cardiovascular diseases. Transcriptional–translational feedback loop of the clock genes constitute a molecular clock system. In addition to the central clock in the suprachiasmatic nucleus, clock genes are also expressed in a circadian fashion in each organ to make up the peripheral clock. The peripheral clock seems to be beneficial for anticipating external stimuli and thus contributes to the maintenance of organ homeostasis. Loss of synchronization between the central and peripheral clocks also augments disease progression. Moreover, accumulating evidence shows that clock genes affect inflammatory and intracellular metabolic signaling. Elucidating the roles of the molecular clock in cardiovascular pathology through the identification of clock controlled genes will help to establish a novel therapeutic approach for cardiovascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCG:

Clock-controlled gene

SCN:

Suprachiasmatic nucleus

ANP:

Atrial natriuretic peptide

PAR:

Proline and acid-rich

LV:

Left ventricle

MI:

Myocardial infarction

L/D:

Light/dark

TAC:

Transverse aortic constriction

CCM:

Cardiomyocyte-specific clock mutant

NO:

Nitric oxide

eNOS:

Endothelial NO synthase

PAI-1:

Plasminogen activator inhibitor-1

VT/VF:

Ventricular tachycardia/fibrillation

References

  1. Takeda N, Maemura K (2011) Circadian clock and cardiovascular disease. J Cardiol 57:249–256

    Article  PubMed  Google Scholar 

  2. Muller JE, Stone PH, Turi ZG, Rutherford JD, Czeisler CA, Parker C, Poole WK, Passamani E, Roberts R, Robertson T et al (1985) Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med 313:1315–1322

    Article  CAS  PubMed  Google Scholar 

  3. Steinbach K, Glogar D, Weber H, Joskowicz G, Kaindl F (1982) Frequency and variability of ventricular premature contractions–the influence of heart rate and circadian rhythms. Pacing Clin Electrophysiol 5:38–51

    Article  CAS  PubMed  Google Scholar 

  4. Takeda N, Maemura K (2010) Circadian clock and vascular disease. Hypertens Res 33:645–651

    Article  PubMed  Google Scholar 

  5. Young ME, Razeghi P, Cedars AM, Guthrie PH, Taegtmeyer H (2001) Intrinsic diurnal variations in cardiac metabolism and contractile function. Circ Res 89:1199–1208

    Article  CAS  PubMed  Google Scholar 

  6. Grimaldi B, Bellet MM, Katada S, Astarita G, Hirayama J, Amin RH, Granneman JG, Piomelli D, Leff T, Sassone-Corsi P (2010) PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab 12:509–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A (2013) Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science 341:1483–1488

    Article  CAS  PubMed  Google Scholar 

  8. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hirayama J, Sassone-Corsi P (2005) Structural and functional features of transcription factors controlling the circadian clock. Curr Opin Genet Dev 15:548–556

    Article  CAS  PubMed  Google Scholar 

  10. Schibler U (2005) The daily rhythms of genes, cells and organs. Biological clocks and circadian timing in cells. EMBO Rep 6 Spec No:S9–S13

  11. Young ME (2006) The circadian clock within the heart: potential influence on myocardial gene expression, metabolism, and function. Am J Physiol Heart Circ Physiol 290:H1–H16

    Article  CAS  PubMed  Google Scholar 

  12. Maemura K, de la Monte SM, Chin MT, Layne MD, Hsieh CM, Yet SF, Perrella MA, Lee ME (2000) CLIF, a novel cycle-like factor, regulates the circadian oscillation of plasminogen activator inhibitor-1 gene expression. J Biol Chem 275:36847–36851

    Article  CAS  PubMed  Google Scholar 

  13. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Shi S, Hida A, McGuinness OP, Wasserman DH, Yamazaki S, Johnson CH (2010) Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2. Curr Biol 20:316–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Polidarova L, Sladek M, Novakova M, Parkanova D, Sumova A (2013) Increased sensitivity of the circadian system to temporal changes in the feeding regime of spontaneously hypertensive rats—a potential role for Bmal2 in the liver. PLoS One 8:e75690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sasaki M, Yoshitane H, Du NH, Okano T, Fukada Y (2009) Preferential inhibition of BMAL2-CLOCK activity by PER2 reemphasizes its negative role and a positive role of BMAL2 in the circadian transcription. J Biol Chem 284:25149–25159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Durgan DJ, Pat BM, Laczy B, Bradley JA, Tsai JY, Grenett MH, Ratcliffe WF, Brewer RA, Nagendran J, Villegas-Montoya C, Zou C, Zou L, Johnson RL Jr, Dyck JR, Bray MS, Gamble KL, Chatham JC, Young ME (2011) O-GlcNAcylation, novel post-translational modification linking myocardial metabolism and cardiomyocyte circadian clock. J Biol Chem 286:44606–44619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Aguilar-Arnal L, Sassone-Corsi P (2013) The circadian epigenome: how metabolism talks to chromatin remodeling. Curr Opin Cell Biol 25:170–176

    Article  CAS  PubMed  Google Scholar 

  19. Katada S, Sassone-Corsi P (2010) The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17:1414–1421

    Article  CAS  PubMed  Google Scholar 

  20. DiTacchio L, Le HD, Vollmers C, Hatori M, Witcher M, Secombe J, Panda S (2011) Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333:1881–1885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508

    Article  CAS  PubMed  Google Scholar 

  22. Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P (2007) CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450:1086–1090

    Article  CAS  PubMed  Google Scholar 

  23. Partch CL, Green CB, Takahashi JS (2014) Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24:90–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937

    Article  CAS  PubMed  Google Scholar 

  25. Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, Priest AA, Buhr ED, Singer O, Meeker K, Verma IM, Doyle FJ 3rd, Takahashi JS, Kay SA (2007) Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129:605–616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Maemura K, Layne MD, Watanabe M, Perrell MA, Nagai R, Lee ME (2001) Molecular mechanisms of morning onset of myocardial infarction. Ann N Y Acad Sci 947:398–402

    Article  CAS  PubMed  Google Scholar 

  27. Durgan DJ, Hotze MA, Tomlin TM, Egbejimi O, Graveleau C, Abel ED, Shaw CA, Bray MS, Hardin PE, Young ME (2005) The intrinsic circadian clock within the cardiomyocyte. Am J Physiol Heart Circ Physiol 289:H1530–H1541

    Article  CAS  PubMed  Google Scholar 

  28. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83

    Article  CAS  PubMed  Google Scholar 

  29. Young ME, Razeghi P, Taegtmeyer H (2001) Clock genes in the heart: characterization and attenuation with hypertrophy. Circ Res 88:1142–1150

    Article  CAS  PubMed  Google Scholar 

  30. Yamashita T, Sekiguchi A, Iwasaki YK, Sagara K, Iinuma H, Hatano S, Fu LT, Watanabe H (2003) Circadian variation of cardiac K + channel gene expression. Circulation 107:1917–1922

    Article  PubMed  Google Scholar 

  31. Orth DN, Island DP, Liddle GW (1967) Experimental alteration of the circadian rhythm in plasma cortisol (17-OHCS) concentration in man. J Clin Endocrinol Metab 27:549–555

    Article  CAS  PubMed  Google Scholar 

  32. Charloux A, Gronfier C, Lonsdorfer-Wolf E, Piquard F, Brandenberger G (1999) Aldosterone release during the sleep-wake cycle in humans. Am J Physiol 276:E43–E49

    CAS  PubMed  Google Scholar 

  33. Stern N, Sowers JR, McGinty D, Beahm E, Littner M, Catania R, Eggena P (1986) Circadian rhythm of plasma renin activity in older normal and essential hypertensive men: relation with inactive renin, aldosterone, cortisol and REM sleep. J Hypertens 4:543–550

    Article  CAS  PubMed  Google Scholar 

  34. Hartikainen J, Tarkiainen I, Tahvanainen K, Mantysaari M, Lansimies E, Pyorala K (1993) Circadian variation of cardiac autonomic regulation during 24-h bed rest. Clin Physiol 13:185–196

    Article  CAS  PubMed  Google Scholar 

  35. Kung TA, Egbejimi O, Cui J, Ha NP, Durgan DJ, Essop MF, Bray MS, Shaw CA, Hardin PE, Stanley WC, Young ME (2007) Rapid attenuation of circadian clock gene oscillations in the rat heart following ischemia-reperfusion. J Mol Cell Cardiol 43:744–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Young ME, Wilson CR, Razeghi P, Guthrie PH, Taegtmeyer H (2002) Alterations of the circadian clock in the heart by streptozotocin-induced diabetes. J Mol Cell Cardiol 34:223–231

    Article  CAS  PubMed  Google Scholar 

  37. Hurd MW, Ralph MR (1998) The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms 13:430–436

    Article  CAS  PubMed  Google Scholar 

  38. Penev PD, Kolker DE, Zee PC, Turek FW (1998) Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease. Am J Physiol 275:H2334–H2337

    CAS  PubMed  Google Scholar 

  39. Alibhai FJ, Tsimakouridze EV, Chinnappareddy N, Wright DC, Billia F, O’Sullivan ML, Pyle WG, Sole MJ, Martino TA (2014) Short-term disruption of diurnal rhythms after murine myocardial infarction adversely affects long-term myocardial structure and function. Circ Res 114:1713–1722

    Article  CAS  PubMed  Google Scholar 

  40. Martino TA, Oudit GY, Herzenberg AM, Tata N, Koletar MM, Kabir GM, Belsham DD, Backx PH, Ralph MR, Sole MJ (2008) Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am J Physiol Regul Integr Comp Physiol 294:R1675–R1683

    Article  CAS  PubMed  Google Scholar 

  41. Alvarez JD, Hansen A, Ord T, Bebas P, Chappell PE, Giebultowicz JM, Williams C, Moss S, Sehgal A (2008) The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J Biol Rhythms 23:26–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Andrews JL, Zhang X, McCarthy JJ, McDearmon EL, Hornberger TA, Russell B, Campbell KS, Arbogast S, Reid MB, Walker JR, Hogenesch JB, Takahashi JS, Esser KA (2010) CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci USA 107:19090–19095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Bunger MK, Walisser JA, Sullivan R, Manley PA, Moran SM, Kalscheur VL, Colman RJ, Bradfield CA (2005) Progressive arthropathy in mice with a targeted disruption of the Mop3/Bmal-1 locus. Genesis 41:122–132

    Article  CAS  PubMed  Google Scholar 

  44. Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F (2005) Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28:395–409

    PubMed  Google Scholar 

  45. Sun Y, Yang Z, Niu Z, Wang W, Peng J, Li Q, Ma MY, Zhao Y (2006) The mortality of MOP3 deficient mice with a systemic functional failure. J Biomed Sci 13:845–851

    Article  CAS  PubMed  Google Scholar 

  46. Lefta M, Campbell KS, Feng HZ, Jin JP, Esser KA (2012) Development of dilated cardiomyopathy in Bmal1-deficient mice. Am J Physiol Heart Circ Physiol 303:H475–H485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Durgan DJ, Trexler NA, Egbejimi O, McElfresh TA, Suk HY, Petterson LE, Shaw CA, Hardin PE, Bray MS, Chandler MP, Chow CW, Young ME (2006) The circadian clock within the cardiomyocyte is essential for responsiveness of the heart to fatty acids. J Biol Chem 281:24254–24269

    Article  CAS  PubMed  Google Scholar 

  48. Bray MS, Shaw CA, Moore MW, Garcia RA, Zanquetta MM, Durgan DJ, Jeong WJ, Tsai JY, Bugger H, Zhang D, Rohrwasser A, Rennison JH, Dyck JR, Litwin SE, Hardin PE, Chow CW, Chandler MP, Abel ED, Young ME (2008) Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol 294:H1036–H1047

    Article  CAS  PubMed  Google Scholar 

  49. Durgan DJ, Tsai JY, Grenett MH, Pat BM, Ratcliffe WF, Villegas-Montoya C, Garvey ME, Nagendran J, Dyck JR, Bray MS, Gamble KL, Gimble JM, Young ME (2011) Evidence suggesting that the cardiomyocyte circadian clock modulates responsiveness of the heart to hypertrophic stimuli in mice. Chronobiol Int 28:187–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Young ME, Brewer RA, Peliciari-Garcia RA, Collins HE, He L, Birky TL, Peden BW, Thompson EG, Ammons BJ, Bray MS, Chatham JC, Wende AR, Yang Q, Chow CW, Martino TA, Gamble KL (2014) Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythms 29:257–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Eckle T, Hartmann K, Bonney S, Reithel S, Mittelbronn M, Walker LA, Lowes BD, Han J, Borchers CH, Buttrick PM, Kominsky DJ, Colgan SP, Eltzschig HK (2012) Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med 18:774–782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Guney HZ, Hodoglugil U, Uluoglu C, Gorgun CZ, Ercan ZS, Abacioglu N, Zengil H (1998) In vitro susceptibility rhythms. II. Biological-time-dependent differences in effect of beta 1- and beta 2-adrenergic agonists of rat aorta and influence of endothelium. Chronobiol Int 15:159–172

    Article  CAS  PubMed  Google Scholar 

  53. Otto ME, Svatikova A, Barretto RB, Santos S, Hoffmann M, Khandheria B, Somers V (2004) Early morning attenuation of endothelial function in healthy humans. Circulation 109:2507–2510

    Article  PubMed  Google Scholar 

  54. Fujita M, Franklin D (1987) Diurnal changes in coronary blood flow in conscious dogs. Circulation 76:488–491

    Article  CAS  PubMed  Google Scholar 

  55. Kobrin I, Oigman W, Kumar A, Ventura HO, Messerli FH, Frohlich ED, Dunn FG (1984) Diurnal variation of blood pressure in elderly patients with essential hypertension. J Am Geriatr Soc 32:896–899

    Article  CAS  PubMed  Google Scholar 

  56. McNamara P, Seo SB, Rudic RD, Sehgal A, Chakravarti D, FitzGerald GA (2001) Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105:877–889

    Article  CAS  PubMed  Google Scholar 

  57. Takeda N, Maemura K, Horie S, Oishi K, Imai Y, Harada T, Saito T, Shiga T, Amiya E, Manabe I, Ishida N, Nagai R (2007) Thrombomodulin is a clock-controlled gene in vascular endothelial cells. J Biol Chem 282:32561–32567

    Article  CAS  PubMed  Google Scholar 

  58. Nonaka H, Emoto N, Ikeda K, Fukuya H, Rohman MS, Raharjo SB, Yagita K, Okamura H, Yokoyama M (2001) Angiotensin II induces circadian gene expression of clock genes in cultured vascular smooth muscle cells. Circulation 104:1746–1748

    Article  CAS  PubMed  Google Scholar 

  59. Chalmers JA, Martino TA, Tata N, Ralph MR, Sole MJ, Belsham DD (2008) Vascular circadian rhythms in a mouse vascular smooth muscle cell line (Movas-1). Am J Physiol Regul Integr Comp Physiol 295:R1529–R1538

    Article  CAS  PubMed  Google Scholar 

  60. Saito T, Hirano M, Ide T, Ichiki T, Koibuchi N, Sunagawa K, Hirano K (2013) Pivotal role of Rho-associated kinase 2 in generating the intrinsic circadian rhythm of vascular contractility. Circulation 127:104–114

    Article  CAS  PubMed  Google Scholar 

  61. Viswambharan H, Carvas JM, Antic V, Marecic A, Jud C, Zaugg CE, Ming XF, Montani JP, Albrecht U, Yang Z (2007) Mutation of the circadian clock gene Per2 alters vascular endothelial function. Circulation 115:2188–2195

    Article  CAS  PubMed  Google Scholar 

  62. Anea CB, Zhang M, Stepp DW, Simkins GB, Reed G, Fulton DJ, Rudic RD (2009) Vascular disease in mice with a dysfunctional circadian clock. Circulation 119:1510–1517

    Article  PubMed Central  PubMed  Google Scholar 

  63. Anea CB, Cheng B, Sharma S, Kumar S, Caldwell RW, Yao L, Ali MI, Merloiu AM, Stepp DW, Black SM, Fulton DJ, Rudic RD (2012) Increased superoxide and endothelial NO synthase uncoupling in blood vessels of Bmal1-knockout mice. Circ Res 111:1157–1165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Anea CB, Ali MI, Osmond JM, Sullivan JC, Stepp DW, Merloiu AM, Rudic RD (2010) Matrix metalloproteinase 2 and 9 dysfunction underlie vascular stiffness in circadian clock mutant mice. Arterioscler Thromb Vasc Biol 30:2535–2543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Anea CB, Zhang M, Chen F, Ali MI, Hart CM, Stepp DW, Kovalenkov YO, Merloiu AM, Pati P, Fulton D, Rudic RD (2013) Circadian clock control of Nox4 and reactive oxygen species in the vasculature. PLoS One 8:e78626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Bridges AB, McLaren M, Scott NA, Pringle TH, McNeill GP, Belch JJ (1993) Circadian variation of tissue plasminogen activator and its inhibitor, von Willebrand factor antigen, and prostacyclin stimulating factor in men with ischaemic heart disease. Br Heart J 69:121–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Kurnik PB (1995) Circadian variation in the efficacy of tissue-type plasminogen activator. Circulation 91:1341–1346

    Article  CAS  PubMed  Google Scholar 

  68. Naito Y, Tsujino T, Kawasaki D, Okumura T, Morimoto S, Masai M, Sakoda T, Fujioka Y, Ohyanagi M, Iwasaki T (2003) Circadian gene expression of clock genes and plasminogen activator inhibitor-1 in heart and aorta of spontaneously hypertensive and Wistar-Kyoto rats. J Hypertens 21:1107–1115

    Article  CAS  PubMed  Google Scholar 

  69. Schoenhard JA, Smith LH, Painter CA, Eren M, Johnson CH, Vaughan DE (2003) Regulation of the PAI-1 promoter by circadian clock components: differential activation by BMAL1 and BMAL2. J Mol Cell Cardiol 35:473–481

    Article  CAS  PubMed  Google Scholar 

  70. Westgate EJ, Cheng Y, Reilly DF, Price TS, Walisser JA, Bradfield CA, FitzGerald GA (2008) Genetic components of the circadian clock regulate thrombogenesis in vivo. Circulation 117:2087–2095

    Article  PubMed  Google Scholar 

  71. Hemmeryckx B, Van Hove CE, Fransen P, Emmerechts J, Kauskot A, Bult H, Lijnen HR, Hoylaerts MF (2011) Progression of the prothrombotic state in aging Bmal1-deficient mice. Arterioscler Thromb Vasc Biol 31:2552–2559

    Article  CAS  PubMed  Google Scholar 

  72. Bagai K, Muldowney JA 3rd, Song Y, Wang L, Bagai J, Artibee KJ, Vaughan DE, Malow BA (2014) Circadian variability of fibrinolytic markers and endothelial function in patients with obstructive sleep apnea. Sleep 37:359–367

    PubMed Central  PubMed  Google Scholar 

  73. Cheng B, Anea CB, Yao L, Chen F, Patel V, Merloiu A, Pati P, Caldwell RW, Fulton DJ, Rudic RD (2011) Tissue-intrinsic dysfunction of circadian clock confers transplant arteriosclerosis. Proc Natl Acad Sci USA 108:17147–17152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Jensen LD, Cao Z, Nakamura M, Yang Y, Brautigam L, Andersson P, Zhang Y, Wahlberg E, Lanne T, Hosaka K, Cao Y (2012) Opposing effects of circadian clock genes bmal1 and period2 in regulation of VEGF-dependent angiogenesis in developing zebrafish. Cell Rep 2:231–241

    Article  CAS  PubMed  Google Scholar 

  75. Bexton RS, Vallin HO, Camm AJ (1986) Diurnal variation of the QT interval–influence of the autonomic nervous system. Br Heart J 55:253–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Cinca J, Moya A, Bardaji A, Rius J, Soler-Soler J (1990) Circadian variations of electrical properties of the heart. Ann N Y Acad Sci 601:222–233

    Article  CAS  PubMed  Google Scholar 

  77. Oda E, Aizawa Y, Arai Y, Shibata A (1985) Diurnal variation of QT interval in patients with VVI pacemaker. Tohoku J Exp Med 145:419–426

    Article  CAS  PubMed  Google Scholar 

  78. Schroder EA, Lefta M, Zhang X, Bartos DC, Feng HZ, Zhao Y, Patwardhan A, Jin JP, Esser KA, Delisle BP (2013) The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility. Am J Physiol Cell Physiol 304:C954–C965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Gillis AM, Peters RW, Mitchell LB, Duff HJ, McDonald M, Wyse DG (1992) Effects of left ventricular dysfunction on the circadian variation of ventricular premature complexes in healed myocardial infarction. Am J Cardiol 69:1009–1014

    Article  CAS  PubMed  Google Scholar 

  80. Behrens S, Galecka M, Bruggemann T, Ehlers C, Willich SN, Ziss W, Dissmann R, Andresen D (1995) Circadian variation of sustained ventricular tachyarrhythmias terminated by appropriate shocks in patients with an implantable cardioverter defibrillator. Am Heart J 130:79–84

    Article  CAS  PubMed  Google Scholar 

  81. Kozak M, Krivan L, Semrad B (2003) Circadian variations in the occurrence of ventricular tachyarrhythmias in patients with implantable cardioverter defibrillators. Pacing Clin Electrophysiol 26:731–735

    Article  PubMed  Google Scholar 

  82. Englund A, Behrens S, Wegscheider K, Rowland E (1999) Circadian variation of malignant ventricular arrhythmias in patients with ischemic and nonischemic heart disease after cardioverter defibrillator implantation. European 7219 Jewel Investigators. J Am Coll Cardiol 34:1560–1568

    Article  CAS  PubMed  Google Scholar 

  83. Willich SN, Maclure M, Mittleman M, Arntz HR, Muller JE (1993) Sudden cardiac death. Support for a role of triggering in causation. Circulation 87:1442–1450

    Article  CAS  PubMed  Google Scholar 

  84. Jeyaraj D, Haldar SM, Wan X, McCauley MD, Ripperger JA, Hu K, Lu Y, Eapen BL, Sharma N, Ficker E, Cutler MJ, Gulick J, Sanbe A, Robbins J, Demolombe S, Kondratov RV, Shea SA, Albrecht U, Wehrens XH, Rosenbaum DS, Jain MK (2012) Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature 483:96–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Patton KK, Hellkamp AS, Lee KL, Mark DB, Johnson GW, Anderson J, Bardy GH, Poole JE (2014) Unexpected deviation in circadian variation of ventricular arrhythmias: the SCD-HeFT (Sudden Cardiac Death in Heart Failure Trial). J Am Coll Cardiol 63:2702–2708

    Article  PubMed Central  PubMed  Google Scholar 

  86. Al Mheid I, Corrigan F, Shirazi F, Veledar E, Li Q, Alexander WR, Taylor WR, Waller EK, Quyyumi AA (2014) Circadian variation in vascular function and regenerative capacity in healthy humans. J Am Heart Assoc 3:e000845

    Article  PubMed  Google Scholar 

  87. Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K, Taniguchi N, Ohno H, Kizaki T (2014) A circadian clock gene, Rev-erbalpha, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression. J Immunol 192:407–417

    Article  CAS  PubMed  Google Scholar 

  88. Ma H, Zhong W, Jiang Y, Fontaine C, Li S, Fu J, Olkkonen VM, Staels B, Yan D (2013) Increased atherosclerotic lesions in LDL receptor deficient mice with hematopoietic nuclear receptor Rev-erbalpha knock- down. J Am Heart Assoc 2:e000235

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science, Japan (to K.M. and N.T. 25461113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Norihiko Takeda or Koji Maemura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeda, N., Maemura, K. The role of clock genes and circadian rhythm in the development of cardiovascular diseases. Cell. Mol. Life Sci. 72, 3225–3234 (2015). https://doi.org/10.1007/s00018-015-1923-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1923-1

Keywords

Navigation