Skip to main content

Advertisement

Log in

Study of the bioerosion of Phoenician elephant tusks from the shipwreck of Bajo de la Campana: lots of hypotheses, few certainties

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The shipwreck of Bajo de la Campana (VII–VI century B.C.) was a Phoenician merchant ship accidentally discovered in the 1950s off the coasts of the Murcia region (Spain). Sixty-four elephant tusks were part of the cargo. Some of them were recovered by archaeologists between 2007 and 2011 and are now stored in the restoration laboratory of the National Museum of Underwater Archaeology (ARQVA) of Cartagena. This study investigated the bioerosion traces present on 12 selected tusks in order to hypothesize which marine or terrestrial macroborers could have attacked this substrate. No work has previously looked at the biological degradation of this material. Taking into account the mineral composition of ivory, the hypothesized bioeroders were selected from those reported in the literature as bioeroders of rocks or other hard substrates (bones, corals, shells, etc.). The hypothesized biodeteriogens belongs to several groups of marine invertebrates (echinoids, barnacles, molluscs, sponges, polychaetes, and bryozoans) and terrestrial insects. Unfortunately, the absence of parts of the bioeroders’ body or of skeletal elements inside the studied traces did not allow definitive identification, so the attributions remain hypotheses. However, this study could be considered a starting point for an interesting debate and for future investigations on the bioerosion of this precious material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albéric M (2014) Etude chimique et structurale de l’ivoire d’éléphant moderne et ancien. Université Pierre et Marie Curie—Paris VI

  • Albéric M, Gourrier A, Müller K et al (2014) Early diagenesis of elephant tusk in marine environment. Palaeogeogr Palaeoclimatol Palaeoecol 416:120–132

    Article  Google Scholar 

  • Albéric M, Dean MN, Gourrier A et al (2017) Relation between the macroscopic pattern of elephant ivory and its three-dimensional micro-tubular network. PLoS One 12:e0166671

    Article  Google Scholar 

  • Asgaard U, Bromley RG (2008) Echinometrid sea urchins, their trophic styles and corresponding bioerosion. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 279–303

    Chapter  Google Scholar 

  • Barbosa SS, Byrne M, Kelaher BP (2008) Bioerosion caused by foraging of the tropical chiton Acanthopleura gemmata at One Tree Reef, southern Great Barrier Reef. Coral Reefs 27:635–639. https://doi.org/10.1007/s00338-008-0369-4

    Article  Google Scholar 

  • Bavestrello G, Calcinai B, Cerrano C, Sarà M (1997) Delectona madreporica n. sp. (Porifera, Demospongiae) boring the corallites of some scleractinians from the Ligurian Sea. Ital J Zool 64:273–277. https://doi.org/10.1080/11250009709356208

    Article  Google Scholar 

  • Belaústegui Z, Muñiz F, Nebelsick JH, Domènech R, Martinell J (2017) Echinoderm ichnology: bioturbation, bioerosion and related processes. J Paleontol 91(4):643–661

    Article  Google Scholar 

  • Bethencourt M, Tomas FM, Izquierdo A (2014) ARQUEOMONITOR: Contribución de las condiciones físicas, químicas y biológicas en el deterioro y salvaguarda del Patrimonio Cultural Subacuático Influencia sobre las velocidades de corrosión en la artillería de dos pecios asociados a la Batalla de Trafalga. In: Actas del I Congreso de Arqueología Náutica y Subacuática Española. Volumen 2. p 331–342

  • Borchiellini C, Alivon E, Vacelet J (2004) The systematic position of Alectona (Porifera, Demospongiae): a tetractinellid sponge. Boll dei Musei e degli Ist Biol dell’Università di Genova 68:209–217

    Google Scholar 

  • Botquelen A, Mayoral E (2005) Early Devonian bioerosion in the Rade de Brest, Armorican Massif, France. Palaeontology 48:1057–1064. https://doi.org/10.1111/j.1475-4983.2005.00492.x

    Article  Google Scholar 

  • Britt BB, Scheetz RD, Dangerfield A (2008) A suite of dermestid beetle traces on dinosaur bone from the Upper Jurassic Morrison Formation, Wyoming, USA. Ichnos 15:59–71. https://doi.org/10.1080/10420940701193284

    Article  Google Scholar 

  • Bromley RG (1978) Bioerosion of Bermuda reefs. Palaeogeogr Palaeoclimatol Palaeoecol 23:169–197

    Article  Google Scholar 

  • Bromley RG, Hanken NM, Asgaard U (1990) Shallow marine bioerosion: preliminary results of an experimental study. Bull Geol Soc Denmark 38:85–99

    Google Scholar 

  • Buatois LA, Wisshak M, Wilson MA, Mángano MG (2017) Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth Sci Rev 164:102–181

    Article  Google Scholar 

  • Buendia Ortuño M (2016) La conservación del marfil de procedencia subacuática: las defensas de elefante del Bajo de la campana (San Javier, Murcia) del Museo Nacional de Arqueología Subacuática

  • Calcinai B, Bavestrello G, Cerrano C (2004) Bioerosion micro-patterns as diagnostic characteristics in boring sponges. BMIB-Bollettino dei Musei e degli Ist Biol dell’Università di Genova 68:229–238

    Google Scholar 

  • Calcinai B, Bavestrello G, Cerrano C, Gaggero L (2008) Substratum microtexture affects the boring pattern of Cliona albimarginata (Clionaidae, Demospongiae). In: Current developments in bioerosion. Springer, Berlin, p 203–211

  • Casadío S, Mrenssp SA, Santillana SN (2001) Endolithic bioerosion traces attributed to boring bryozoans. Ameghiniana 38:321–329

    Google Scholar 

  • de Gibert JM, Domènech R, Martinell J (2007) Bioerosion in shell beds from the Pliocene Roussillon Basin, France: implications for the (macro) bioerosion ichnofacies model. Acta Palaeontol Pol 52:783–798

    Google Scholar 

  • Doménech-Carbó M, Buendía-Ortuño M, Pasies-Oviedo T, Osete-Cortina L (2016) Analytical study of waterlogged ivory from the Bajo de la Campana site (Murcia, Spain). Microchem J 126:381–405

    Article  Google Scholar 

  • Espinoza EO, Mann M-J (1993) The history and significance of the Schreger pattern in proboscidean ivory characterization. J Am Inst Conserv 32:241–248. https://doi.org/10.1179/019713693806124866

    Article  Google Scholar 

  • Espinoza E, Mann M, Goddard K (1992) Identification guide for ivory and ivory substitutes. WWF—World Wide Fund

  • Forrest RE, Chapman MG, Underwood AJ (2001) Quantification of radular marks as a method for estimating grazing of intertidal gastropods on rocky shores. J Exp Mar Bio Ecol 258:155–171

    Article  Google Scholar 

  • Genise JF (2016) Ichnoentomology. Insect traces in soils and paleosols. Springer, Berlin

    Google Scholar 

  • Glynn PW, Manzello DP (2015) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (ed) Coral reefs in the Anthropocene. Springer, The Netherlands, pp 67–97

    Chapter  Google Scholar 

  • Godfrey IM, Ghisalberti EL, Beng EW et al (2002) The analysis of ivory from a marine environment. Stud Conserv 47:29–45. https://doi.org/10.1179/sic.2002.47.1.29

    Article  Google Scholar 

  • Hanken NM, Uchman A, Jakobsen SL (2012) Late Pleistocene-early Holocene polychaete borings in NE Spitsbergen and their palaeoecological and climatic implications: an example from the Basissletta area. Boreas 41:42–55. https://doi.org/10.1111/j.1502-3885.2011.00223.x

    Article  Google Scholar 

  • Höpner S, Bertling M (2017) Holes in bones: ichnotaxonomy of bone borings. Ichnos 24:259–282. https://doi.org/10.1080/10420940.2017.1289937

    Article  Google Scholar 

  • Huchet JB (2014) Insect remains and their traces: relevant fossil witnesses in the reconstruction of past funerary practices. Anthropologie 52:329–346

    Google Scholar 

  • Huchet JB, Le Mort F, Rabinovich R et al (2013) Identification of dermestid pupal chambers on Southern Levant human bones: inference for reconstruction of Middle Bronze Age mortuary practices. J Archaeol Sci 40:3793–3803

    Article  Google Scholar 

  • Hutchings P (2008) Role of polychaetes in bioerosion of coral substrates. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 249–264

    Chapter  Google Scholar 

  • Hutchings PA, Peyrot-Clausade M (2002) The distribution and abundance of boring species of polychaetes and sipunculans in coral substrates in French Polynesia. J Exp Mar Bio Ecol 269:101–121

    Article  Google Scholar 

  • Jacinto D, Cruz T (2012) Paracentrotus lividus (Echinodermata: Echinoidea) attachment force and burrowing behavior in rocky shores of SW Portugal. Zoosymposia 7:231–240

    Article  Google Scholar 

  • Kázmér M, Taborosi D (2012) Bioerosion on the small scale–examples from the tropical and subtropical littoral. Hantkeniana 7:37–94

    Google Scholar 

  • Kiene WE, Hutchings PA (1994) Bioerosion experiments at Lizard Island, Great Barrier Reef. Coral Reefs 13:91–98. https://doi.org/10.1007/BF00300767

    Article  Google Scholar 

  • Locke M (2008) Structure of ivory. J Morphol 269:269–423

    Article  Google Scholar 

  • Mas García J (1987) El marfil en la Antigüedad: seguimiento de sus manufacturas hasta el sureste ibérico. Murgetana 72:5–108

    Google Scholar 

  • Mayoral E (1988) Pennatichnus nov. icnogen.; Pinaceocladichnus nov. icnogen. E. Iramena; huellas de bioerosion debidas a Bryozoa perforantes (Ctenostomata. Plioceno. Rev Española Paleontol 3:13–22

    Google Scholar 

  • Mederos A, Ruiz Cabrero LA (2004) El pecio fenicio del Bajo de la Campana (Murcia, España) y el comercio del marfil norteafricano. Zephyrus 57:263–281

    Google Scholar 

  • Mikuláš R, Pek I (1996) Borings in the oyster shells from the Badenian at Česká Třebová and its neighbourhood (Eastern Bohemia, Czech Republic). J Geosci 41:97–100

    Google Scholar 

  • Moen FE, Svensen E (2004) Marine fish & invertebrates of Northern Europe. AquaPress, Southend-On-Sea, Essex

    Google Scholar 

  • Odes EJ, Parkinson AH, Randolph-Quinney PS et al (2017) Osteopathology and insect traces in the Australopithecus africanus skeleton StW 431. S Afr J Sci 113:1–7. https://doi.org/10.17159/sajs.2017/20160143

    Article  Google Scholar 

  • Otter GW (1932) Rock-burrowing echinoids. Biol Rev 7:89–107. https://doi.org/10.1111/j.1469-185X.1962.tb01037.x

    Article  Google Scholar 

  • Paes Neto VD, Parkinson AH, Pretto FA et al (2016) Oldest evidence of osteophagic behavior by insects from the Triassic of Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 453:30–41

    Article  Google Scholar 

  • Pinedo Reyes J (2013) Investigaciones arqueológicas subacuáticas en el Bajo de la Campana 2007-2011. San Javier (Murcia). In: Prieto XN, Pernía AR (eds) I Congreso de Arqueología Náutica y Subacuática Española, Cartagena 14, 15 y 16 de Marzo de 2013. Ministerio de Educación, Cultura y Deporte, Madrid, pp 16–25

    Google Scholar 

  • Pinedo Reyes J, Polzer ME (2012) El yacimiento subacuático del Bajo de la Campana. Actas de las Jornadas de ARQUA 2011. Ministerio de Educación, Cultura y Deporte, Madrid, pp 90–95

    Google Scholar 

  • Pohowsky RA (1974) Notes on the study and nomenclature of boring Bryozoa. J Paleontol 48:556–564

    Google Scholar 

  • Pokines JT, Higgs N (2015) Macroscopic taphonomic alterations to human bone recovered from marine environments. J Forensic Identificat 65:953–984

    Google Scholar 

  • Polzer ME (2014) The Bajo de la Campana shipwreck and colonial trade in Phoenician Spain. In: Aruz J, Graff SB, Rakic Y (eds) Assyria to Iberia at the dawn of the Classical Age. The Metropolitan Museum of Art, New York, pp 230–242

    Google Scholar 

  • Reyes Y, Córdova C, Romero L, Paredes C (2001) Marcas radulares producidas por gasterópodos pastoreadores del intermareal rocoso. Rev Peru Biol 8:38–44

    Google Scholar 

  • Ricci S, Sacco Perasso C, Antonelli F, Davidde Petriaggi B (2015) Marine bivalves colonizing Roman artefacts recovered in the Gulf of Pozzuoli and in the Blue Grotto in Capri (Naples, Italy): boring and nestling species. Int Biodeterior Biodegrad. https://doi.org/10.1016/j.ibiod.2014.12.001

    Article  Google Scholar 

  • Roberts EM, Rogers RR, Foreman BZ (2007) Continental insect borings in dinosaur bone: examples from the Late Cretaceous of Madagascar and Utah. J Paleontol 81:201–208

    Article  Google Scholar 

  • Rosell D, Uriz MJ (2002) Excavating and endolithic sponge species (Porifera) from the Mediterranean: species descriptions and identification key. Org Divers Evol 2:55–86

    Article  Google Scholar 

  • Rosso A (2008) Leptichnus tortus isp. nov., a new cheilostome etching and comments on other bryozoan-produced trace fossils. Stud Trentini di Sci Nat Acta Geol 83:75–85

    Google Scholar 

  • Sanmartin Ascaso J (1986) Inscripciones fenicio-púnicas del Sureste hispánico (1). In: Los fenicios en la Península Ibérica, vol. II. Sabadell, pp 90–91

  • Saunders J (1979) A close look at ivory. Living Mus 41:56–59

    Google Scholar 

  • Schönberg CHL, Beuck L (2007) Where Topsent went wrong: Aka infesta aka Aka labyrinthica (Demospongiae: Phloeodictyidae) and implications for other Aka spp. J Mar Biol Assoc UK 87:1459–1476

    Article  Google Scholar 

  • Scott PJB, Risk MJ (1988) The effect of Lithophaga (Bivalvia: mytilidae) boreholes on the strength of the coral Porites lobata. Coral Reefs 7:145–151. https://doi.org/10.1007/BF00300974

    Article  Google Scholar 

  • Taylor PD, Wilson MA, Bromley RG (1999) a new ichnogenus for etchings made by cheilostome bryozoans into calcareous substrates. Palaeontology 42:595–604. https://doi.org/10.1111/1475-4983.00087

    Article  Google Scholar 

  • Taylor PD, Wilson MA, Bromley RG (2013) Finichnus, a new name for the ichnogenus Leptichnus Taylor, Wilson and Bromley, 1999, preoccupied byLeptichnus Simroth, 1896 (Mollusca, Gastropoda). Palaeontology 56:456

    Article  Google Scholar 

  • Thompson RC, Johnson LE, Hawkins SJ (1997) A method for spatial and temporal assessment of gastropod grazing intensity in the field: the use of radula scrapes on wax surfaces. J Exp Mar Bio Ecol 218:63–67

    Article  Google Scholar 

  • Vinn O, Wilson MA, Mõtus M-A (2014) The earliest giant Osprioneides borings from the Sandbian (Late Ordovician) of Estonia. PLoS One 9:e99455. https://doi.org/10.1371/journal.pone.0099455

    Article  Google Scholar 

  • Virág A (2012) Histogenesis of the unique morphology of proboscidean ivory. J Morphol 273:1406–1423

    Article  Google Scholar 

  • Viskova LA, Pakhnevich AV (2010) A new boring bryozoan from the Middle Jurassic of the Moscow Region and its micro-CT research. Paleontol J 44:157–167. https://doi.org/10.1134/S0031030110020073

    Article  Google Scholar 

  • Voigt E (1965) Über parasitische Polychaeten in Kreide-Austern sowie einige andere in Muschelschalen bohrende Würmer. Paläontologische Zeitschrift 39:193–211. https://doi.org/10.1007/BF02990164

    Article  Google Scholar 

  • Voigt E, Soule JD (1973) Cretaceous burrowing bryozoans. J Paleontol 47:21–33

    Google Scholar 

  • Wisshak M (2006) High-latitude bioerosion: the Kosterfjord experiment. Springer, Berlin

    Google Scholar 

  • Wisshak M, Tribollet A, Golubic S et al (2011) Temperate bioerosion: ichnodiversity and biodiversity from intertidal to bathyal depths (Azores). Geobiology 9:492–520. https://doi.org/10.1111/j.1472-4669.2011.00299.x

    Article  Google Scholar 

  • Zottoli RA, Carriker MR (1974) Burrow morphology, tube formation, and microarchitecture of shell dissolution by the spionid polychaete Polydora websteri. Mar Biol 27:307–316. https://doi.org/10.1007/BF00394366

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Iván Negueruela Martínez, Director of the National Museum of Underwater Archaeology (ARQVA), who gave us the opportunity to study these wonderful remains and who encouraged us during our stay in Cartagena. We are grateful to Juan Pinedo and Mark Polzer for giving us the authorization to publish the pictures related to the archeological site. We would also like to thank Christine Schoenberg for her interesting comments concerning the possible bioerosion by sponges, and Alfred Uchman for his important suggestion on the bioerosive role of insects.

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Antonelli.

Additional information

This article is part of a Topical Collection in Facies on Bioerosion: An interdisciplinary approach, guest edited by Ricci et al.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonelli, F., Ricci, S., Davidde Petriaggi, B. et al. Study of the bioerosion of Phoenician elephant tusks from the shipwreck of Bajo de la Campana: lots of hypotheses, few certainties. Facies 65, 10 (2019). https://doi.org/10.1007/s10347-019-0553-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-019-0553-8

Keywords

Navigation