Skip to main content
Log in

Breeding Perennial Fruit Crops for Quality Improvement

Verbesserung der Fruchtqualität von Obst durch Züchtung

  • Original Article
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

Fruits play a crucial role in human diets and as a commercial commodity in trade. The consumers have considered fruit quality as the most important criteria that decides its acceptability. Fruit quality-based overall acceptability determines the success of any breeding programme, as a number of improved varieties with desired traits including resistance to stresses could not be popularized due to their poor quality fruits. However, breeding for quality improvement in perennial fruit crops is hampered by a number of limitations including large size of the plant, long juvenile phase and environmental problems (e.g. fruit drops due to natural calamities). Besides, fruit quality is a polygenic trait, which is quantitatively inherited and thus making breeding programme complicated in quality improvement of fruit crops. Several attempts have been made to improve the quality characters in annual staple crops, however this aspect is conveniently ignored in case of perennial fruit crops. A balanced approach combining conventional and non-conventional breeding techniques could help in addressing this issue. The biotechnological approaches provide precision, reliability and are considered to reduce the breeding cycle in long duration crops. Efficacy of approaches like marker assisted selection, candidate gene, genomics, trangenics, cisgenics has shown to be advantageous when dealing with cumbersome crops. This review would focus on problems in fruit breeding and present status of different breeding approaches for fruit quality improvement in fruit trees.

Zusammenfassung

Früchte spielen in der menschlichen Ernährung und als Handelsware eine maßgebliche Rolle. Die Fruchtqualität wird von den Verbrauchern als das wichtigste Kriterium in Bezug auf die Akzeptanz angesehen. Die auf die Frucht bezogene Gesamtqualität bestimmt den Erfolg jedes Züchtungsprogrammes, so konnten eine Reihe von Sorten mit gewünschten Eigenschaften, Krankheitsresistenzen einbezogen, aufgrund ihrer geringen Fruchtqualität nicht verbreitet werden. Insbesondere die Züchtung mehrjähriger Obstgehölze zur Verbesserung der Qualität wird von einer Reihe begrenzender Faktoren behindert, wobei die Größe der Pflanze, die lange juvenile Phase und die Abhängigkeit von Klima und Boden (z. Bsp. Fruchtfall bei ungünstigen Witterungsverhältnissen) zu nennen sind. Zudem ist Fruchtqualität ein polygenes Merkmal, das quantitativ vererbt wird und dadurch das Züchtungsprogramm zur Qualitätsverbesserung bei Obstgehölzen erschwert. Bei einjährigen Nutzpflanzen sind einige Anläufe genommen worden, um die Qualitätsmerkmale zu verbessern. Bei mehrjährigen Obstkulturen wird dieser Aspekt praktischerweise weggelassen. Eine ausgewogene Herangehensweise, die konventionelle mit nichtkonventionellen Züchtungsmethoden kombiniert, könnte bei dieser Fragestellung behilflich sein. Die biotechnologischen Ansätze bieten Genauigkeit, Zuverlässigkeit und werden als geeignet angesehen, den Züchtungszyklus bei Dauerkulturen zu minimieren. Die Effizienz der Methoden, wie die markergestützte Selektion, die Kandidatengene, die Genomik, die Transgenetik und die Cis-Genetik hat gezeigt, dass auch in schwierigen Kulturen Erfolge erzielt werden können. Dieser Beitrag beschäftigt sich mit den Problemen in der Obstzüchtung und dem gegenwärtigen Stand der verschiedenen Züchtungsmethoden zur Verbesserung der Fruchtqualität bei Obstgehölzen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antofie M, Lateur R, Oger A, Patocchi C, Durel E, Van de Weg E (2007) A new versatile data-base created for geneticists and breeders to link molecular and phenotypic data in perennial crops: the AppleBreed DataBase. Bioinformatics 23:882–891

    Article  PubMed  CAS  Google Scholar 

  • Arias RS, Borrone JW, Tondo CL, Kuhn DN, Irish BM, Schnell RJ (2012) Genomics of tropical fruit tree crops. In: Schnell RJ, Priyadarshan PM (eds) Genomics of tree crops. Springer Science + Business Media, LLC, Heidelberg. doi:10.1007/978-1-4614-0920-57

    Google Scholar 

  • Broertjes C, Harten van AM (1988) Applied mutation breeding for vegetatively propagated crops. Elsevier, Amsterdam. ISBN: 978-0-444-42786-1

    Google Scholar 

  • Cercos M, Soler G, Iglesias DJ, Gadea J, Forment J, Talon M (2006) Global analysis of gene expression during development and ripening of citrus fruit flesh: a proposed mechanism for citric acid utilization. Plant Mol Biol 62:513–527

    Article  PubMed  CAS  Google Scholar 

  • Chagné D, Célia K, Maysoon R, Mike S, Jenny F, Christelle A, Massimo P, Michela T, Susan EG, Rebecca AH, Andrew CA, Tony K, William AL (2012) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao F, Ming C, Chang-Jie X, Lin B, Xue-Ren Y, Xian L, Andrew C, Ian B, Kun-Song C (2012) Transcriptomic analysis of Chinese bayberry (Myricarubra) fruit development and ripening using RNA-SEq. BMC Genom 13:2–15

    Article  CAS  Google Scholar 

  • Costa F, Sara S, Eric W, Walter G, Michela C, Joseph D, Bernie K, Silviero S (2005) Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica 141:181–190

    Article  CAS  Google Scholar 

  • Da Silva FG, Iandolino A, Al-Kayal F, Bohlmann MC, Cushman MA, Lim H, Ergul A, Figueroa R, Kabuloglu EK, Osborne C, Joan R, Elizabeth T, Anna L, Jane X, JongMin B, Grant RC, John CC, Douglas RC (2005) Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitisspecies and development of a compendium of gene expression during berry development. Plant Physiol 139:574–597

    Article  PubMed  CAS  Google Scholar 

  • Davey MW, Katrien K, Johan K (2006) Genetic control of fruit vitamin C contents. Plant Physiol 142:343–351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dias JS, Ortiz R (2014) Advances in transgenic vegetable and fruit breeding. Agricultural Sci 5:1448–1467. http://dx.doi.org/10.4236/as.2014.514156

    Article  Google Scholar 

  • Dicenta F, García JE, Carbonell EA (1993) Heritability of flowering, productivity and maturity in almond. J Hortic Sci 68:113–120

    Article  Google Scholar 

  • Doganlar S, Tanksley SD, Mutschler MA (2000) Identification and molecular mapping of loci controlling fruit ripening time in tomato. Theo Appl Genet 100:249–255

    Article  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodénès L, Svanella-Dumas P, Cosson V, Pronier R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunuspersica (L.) Batsch]. Theor Appl Genet 105:145–159

    Article  PubMed  CAS  Google Scholar 

  • Gianni T, Yasuo S, Sandie L, Uratsu BL, Nichole O, William KH, Ted D, Dandekar A (2006) Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. Proc Natl Acad Sci USA 103:18842–18847

    Article  CAS  Google Scholar 

  • Goulao LF, Cristina MO (2008) Cell wall modifications during fruit ripening: when a fruit is not the fruit. Trends Fd Sci Tech 19: 4–25

    Article  CAS  Google Scholar 

  • Guo W, Yanxin D, Oscar OF, Zhencai W, Covadonga RA, Jacqueline KB, Jude WG (2005) Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene. Plant Cell Rep 24:482–486. doi 10.1007/s00299-005-0952-x

    Article  PubMed  CAS  Google Scholar 

  • Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z, Tsuda T, Moriguchi T (2002) Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem 40:955–962

    Article  CAS  Google Scholar 

  • Huan H, Yong Z, Chun M, Dong M, Yi W, Xin Z, Zhen H (2012) Identification of markers linked to major gene loci involved in determination of fruit shape index of apples (Malus domestica). Euphytica 185:185–193

    Article  CAS  Google Scholar 

  • Ignatov A, Bodishevskaya A (2011) Malus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources temperate fruits. Springer, Berlin, pp 45–64

    Chapter  Google Scholar 

  • Jacobsen E, Schouten HJ (2008) Cisgenesis: a new tool for traditional plant breeding, should be exempted from the regulation on genetically modified organisms in a step by step approach. Potato Res 1–14. doi:10.1007/s11540-008-9097-y

  • Jalikop SH (2015) Allied species utilization in fruit improvement-way forward. Souvenir of lead papers and abstracts of National meet on distant hybridization in horticultural crop improvement. 25–35

  • Kader AA (1999) Fruit maturity, ripening and quality relationships. Acta Hort 485. (Proc Int Symp. on Effect of pre and post harvest factors on storage of fruits, ISHS)

  • Kader AA, Barrett DM (2004) Chap. 1. Classification, composition of fruits, and postharvest maintenance of quality. In: Barrett DM, Laszlo PS, Hosahalli SR (eds) Processing fruits, 2nd Edn. CRC Press, Boca Raton

    Google Scholar 

  • Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M (2004) Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiol 134:824–837

  • Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genom 4(4):647–661

    Article  Google Scholar 

  • Kita M, Tomoko E, Takehiko S, Takaya M, Yutaka H, Shin H, Mitsuo O (2003) Allelic structures of UDP-glucose: limonoidglucosyltransferase affect limonoid bitterness in Citrus unshiu and C. sinensis. Euphytica 132:87–94

    Article  CAS  Google Scholar 

  • Kumar S, David C, Marco CB, Richard KV, Whitworth C, Charmaine C (2012) Genomic selection for fruit quality traits in apple (Malus x domestica Borkh.). PLoS One 7(5):e36674. doi:10.1371/journal.pone.0036674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunihisa M, Shigeki M, Kazuyuki A, Kazuma O, Takashi H, Takeshi H, Hoytaek K, Chikako N, Shingo T, Toshiya Y (2014) Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breed Sci 64:240–251. doi:10.1270/jsbbs.64.240 2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Ban Z, Li X, Wu M, Wang A, Jiang Y, Jiang Y (2012) Differential expression of anthocyanin biosynthetic genes and transcription factor PcMYB10 in pears (Pyrus communis L.). PLoS One 7:e46070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Q, Xu J, Liu YZ, Zhao XL, Deng XX, Guo LL, Gu JQ (2007) A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J Exp Bot 58:4161–4171

    Article  PubMed  CAS  Google Scholar 

  • Longhi S, Marco M, Roberto V, Riccardo V, Fabrizio C (2012) Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus x domestica Borkh.). J Exp Bot 63:1107–1121

    Article  PubMed  CAS  Google Scholar 

  • Loredana A, Nicasio T, Sergio B, Tonia S, Agatino R, Giuseppe R (2012) Genetic improvement of Citrus fruits: new somatic hybrids from Citrus sinensis (L.) Osb. And Citrus limon (L.) Burm. F Fd Res Intl 48:284–290

    Article  CAS  Google Scholar 

  • Medina JP (1997) Rosica—a new variety selected in Ica Peru. Fruit Variety J 31:88–90

    Google Scholar 

  • Murovec J, Bohanec B (2012) Haploids and doubled haploids in plant breeding in Plant breeding, Dr. Ibrokhim Abdurakhmonov (Ed.), ISBN: 978-953-307-932-5 InTech. http://www.intechopen.com/books/plant-breeding/haploids-and-doubled-haploids-in-plant-breeding

  • Myles S (2013) Improving fruit and wine: what does genomics have to offer? Trends Genet 29(4):190–196

    Article  PubMed  CAS  Google Scholar 

  • National Horticulture Board (2012) www.nhb.gov.in

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Ogundiwin EA, Martí C, Forment J, Pons C, Granell A, Gradziel TM, Peace CP, Park S, Sugimoto N, Larson MD, Beaudry R, Nocker S (2006a) Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol 141:811–824

    Article  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Andrew CA, Lesley LB, Judith HB, Emma G, Kim RJ, Bart JJ, William AL, Steve M, Bhawana N, Gavin SR, Kimberley CS, Edwige JFS, Eric FW, Yar-Khing Y (2006b) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Nookarajua A, Chandrama PU, Shashank KP, Ko Eun Y, Se Jin H, Suk Keun P, Se Won P (2010) Molecular approaches for enhancing sweetness in fruits and vegetables. Sci Hortic 127:1–15

    Article  CAS  Google Scholar 

  • Ogundiwin EA, Cristina M, Javier F, Clara P, Antonio G, Thomas M, Gradziel CP, Peace C, Crisosto H (2008a) Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Mol Biol 68:379–397

    Article  PubMed  CAS  Google Scholar 

  • Ogundiwin EA, Peace CP, Nicolet CM, Rashbrook VK, Gradziel TM, Bliss FA, Parfitt D, Crisosto CH (2008b) Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage browning in peach. Tree Genet Genomes 4:543–554. doi:10.1007/s11295-007-0130-0

    Article  Google Scholar 

  • Ohgawara T, Kobayashi S, Ishii S, Yoshinaqa K, Oiyama I (1989) Somatic hybridization in Citrus: navel orange (C. sinensis Osb.) and grapefruit (C. paradise Macf.). Theor Appl Genet 78(5):609–612

  • Palapol Y, Saichol K, Kui L, Ian BF, Andrew CA (2009) A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana L.) fruit during ripening. Planta 229:1323–1334

    Article  PubMed  CAS  Google Scholar 

  • Parthsarathy U, Nandakishore OP (2014) A Study on nutrient and medicinal compositions of selected indian garcinia species. Curr Bioact Compounds 10(1):55–61

    Article  CAS  Google Scholar 

  • Pena L, Seguin A (2001) Recent advances in the genetic transformation of trees. Trends. Biotechnology 19(12):500–506

    CAS  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7(4):275–291

    Article  CAS  Google Scholar 

  • Prasad GS, Raju B, Kumar KR (2013) Cisgenesis-an alternate approach for development of genetically modified crops. Ann Biol Res 4(9):109–115

    Google Scholar 

  • Ray PK (2002) Breeding tropical and subtropical fruits. Narosa publishing house, New Delhi

    Google Scholar 

  • Sharma TVRS, Singh S, Singh AK, Singh PK (2015) A note on possibility of utilizing wild relatives of crop plants present in Andaman & Nicobar Islands for creating new variability. Souvenir of lead papers and abstracts of National meet on Distant Hybridization in Horticultural crop improvement. 1–17

  • Singh S, Rajam M (2009) Citrus biotechnology: achievements, limitations and future directions Physiol. Mol Biol Plants 15(1):3–22

    Article  CAS  Google Scholar 

  • Tancred SJ, Zeppa AG, Mark C, Stringer JK (1995) Heritability and patterns of inheritance of the ripening date of apples. HortScience 30(2):325–328

    Google Scholar 

  • Terol J, Conesa A, Colmenero JM, Cercos M, Tadeo F, Agustí J, Alos E, Andres F (2008) The areas of flavor, health, color and ripening. BMC Genomics 9:351

    Article  CAS  Google Scholar 

  • Usman M, Fatima B, Muhammad JJ (2001) Breeding in mango. Int J Agriculture Biol 4:522–526

    Google Scholar 

  • Van Harten AM (1998) mutation breeding: theory and practical applications. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Wang XC, Guo L, Shangguan LF, Wang C, Yang G, Qu SC, Fang JG (2012) Analysis of expressed sequence tags from grapevine flower and fruit and development of simple sequence repeat markers. Mol Biol Rep 39:6825–6834

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Chen X, Zong X, Shu H, Gao D, Liu Q (2015) Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L.). PLoS One 10(3):e0121164. doi:10.1371/journal.pone.0121164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zan Wei Y, Fu-Chu H, Gui-Bing H, Xiao-Jing L, Xu-Ming H, Hui-Cong W (2011) Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn. PLoS One 4:1–11

    Google Scholar 

  • Zhu C, Feng C, Xian L, ChangjieXu, Sun C, Chen K (2013) Analysis of expressed sequence tags from chinese bayberry fruit (Myricarubra Sieb. and Zucc.) at different ripening stages and their association with fruit quality development. Int J Mol Sci 14:3110–3123. doi:10.3390/ijms14023110

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gourish Karanjalker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karanjalker, G., Begane, N. Breeding Perennial Fruit Crops for Quality Improvement. Erwerbs-Obstbau 58, 119–126 (2016). https://doi.org/10.1007/s10341-015-0264-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-015-0264-4

Keywords

Schlüsselwörter

Navigation