Skip to main content
Log in

The Bergen left–right discrimination test: practice effects, reliable change indices, and strategic performance in the standard and alternate form with inverted stimuli

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Several authors pointed out that left–right discrimination (LRD) tasks may be entangled with differential demands on mental rotation (MR). However, studies considering this interrelationship are rare. To differentially assess LRD of stimuli with varying additional demands on MR, we constructed and evaluated an extended version of the Bergen right–left discrimination (BRLD) test including additional subtests with inverted stickmen stimuli in 174 healthy participants (50♂, 124♀) and measured subjective reports on participants’ strategies to accomplish the task. Moreover, we analyzed practice effects and reliable change indices (RCIs) on BRLD performance, as well as gender differences. Performance significantly differed between subtests with high and low demands on MR with best scores on subtests with low demands on MR. Participants’ subjective strategies corroborate these results: MR was most frequently reported for subtests with highest MR demands (and lowest test performance). Pronounced practice effects were observed for all subtests. Sex differences were not observed. We conclude that our extended version of the BRLD allows for the differentiation between LRD with high and low demands on MR abilities. The type of stimulus materials is likely to be critical for the differential assessment of MR and LRD. Moreover, RCIs provide a basis for the clinical application of the BRLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Auer T, Schwarcz A, Aradi M, Kalmár Z, Pendleton C, Janszky I, Horváth RA, Szalay C, Dóczi T, Komoly S (2008) Right–left discrimination is related to the right hemisphere. Laterality 13(5):427–438

    Article  PubMed  Google Scholar 

  • Baenninger M, Newcombe N (1989) The role of experience in spatial test performance: a meta-analysis. Sex Roles 20(5):327–344

    Article  Google Scholar 

  • Band GPH, Kok A (2000) Age effects on response monitoring in a mental-rotation task. Biol Psychol 51(2–3):201–221

    Article  PubMed  CAS  Google Scholar 

  • Benton AL (1959) Right–left discrimination and finger localization: development and pathology. Hoeber, Oxford

    Google Scholar 

  • Benton A (1968) Right–left discrimination. Pediatr Clin N Am 15(3):747–758

    CAS  Google Scholar 

  • Berg C, Hertzog C, Hunt E (1982) Age differences in the speed of mental rotation. Dev Psychol 18(1):95–107

    Article  Google Scholar 

  • Brandt MG, Davies ET (2006) Visual-spatial ability, learning modality and surgical knot tying. Can J Surg 49(6):412–416

    PubMed Central  PubMed  Google Scholar 

  • Cermak S (1984) Right–left discrimination in learning disabled and normal control boys. Phys Occup Ther Pediatr 4(2):63–77

    Article  Google Scholar 

  • Chelune GJ, Naugle RI, Lüders H, Sedlak J, Awad IA (1993) Individual change after epilepsy surgery: practice effects and base-rate information. Neuropsychology 7(1):41–52

    Article  Google Scholar 

  • Corballis MC, Cullen S (1986) Decisions about the axes of disoriented shapes. Mem Cognit 14(1):27–38

    Article  PubMed  CAS  Google Scholar 

  • Corballis MC, McMaster H (1996) The roles of stimulus-response compatibility and mental rotation in mirror-image and left–right decisions. Can J Exp Psychol 50(4):397–401

    Article  PubMed  CAS  Google Scholar 

  • Dalecki M, Hoffmann U, Bock O (2012) Mental rotation of letters, body parts and complex scenes: separate or common mechanisms? Hum Mov Sci 31(5):1151–1160

    Article  PubMed  Google Scholar 

  • Gardner MR, Potts R (2010) Hand dominance influences the processing of observed bodies. Brain Cognit 73(1):35–40

    Article  Google Scholar 

  • Gormley GJ, Dempster M, Best R (2008) Right–left discrimination among medical students: questionnaire and psychometric study. Br Med J 337:a2826

    Article  Google Scholar 

  • Guillot A, Champely S, Batier C, Thiriet P, Collet C (2007) Relationship between spatial abilities, mental rotation and functional anatomy learning. Adv Health Sci Edu 12(4):491–507

    Article  Google Scholar 

  • Harris IM, Harris JA, Caine D (2002) Mental-rotation deficits following damage to the right basal ganglia. Neuropsychology 16(4):524–537

    Article  PubMed  Google Scholar 

  • Heaton RK, Temkin N, Dikmen S, Avitable N, Taylor MJ, Marcotte TD, Grant I (2001) Detecting change: a comparison of three neuropsychological methods, using normal and clinical samples. Arch Clin Neuropsychol 16(1):75–91

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Rösler F, Link M, Bajric J (1998) What is improved if a mental rotation task is repeated–the efficiency of memory access, or the speed of a transformation routine? Psychol Res 61(2):99–106

    Article  PubMed  CAS  Google Scholar 

  • Hirnstein M, Bayer U, Ellison A, Hausmann M (2011) TMS over the left angular gyrus impairs the ability to discriminate left from right. Neuropsychologia 49(1):29–33

    Article  PubMed  Google Scholar 

  • Hoyek N, Collet C, Rastello O, Fargier P, Thiriet P, Guillot A (2009) Enhancement of mental rotation abilities and its effect on anatomy learning. Teach Learn Med 21(3):201–206

    Article  PubMed  Google Scholar 

  • Jansen-Osmann P, Heil M (2007) Suitable stimuli to obtain (no) gender differences in the speed of cognitive processes involved in mental rotation. Brain Cognit 64(3):217–227

    Article  Google Scholar 

  • Jordan K, Wüstenberg T, Jaspers-Feyer F, Fellbrich A, Peters M (2006) Sex differences in left/right confusion. Cortex 42(1):69–78

    Article  PubMed  Google Scholar 

  • Kali Y, Orion N (1996) Spatial abilities of high-school students in the perception of geologic structures. J Res Sci Teach 33(4):369–391

    Article  Google Scholar 

  • Kirasic KC (2000) Age differences in adults’ spatial abilities, learning environmental layout, and wayfinding behavior. Sp Cognit Comput 2(2):117–134

    Google Scholar 

  • Kozhevnikov M, Kosslyn S, Shephard J (2005) Spatial versus object visualizers: a new characterization of visual cognitive style. Mem Cognit 33(4):710–726

    Article  PubMed  Google Scholar 

  • Lord SAG, Marsh GR (1975) Age differences in the speed of a spatial cognitive process. J Gerontol 30(6):674–678

    Article  Google Scholar 

  • Maassen GH, Bossema E, Brand N (2009) Reliable change and practice effects: outcomes of various indices compared. J Clin Exp Neuropsychol 31(3):339–352

    Article  PubMed  Google Scholar 

  • Malinowski JC (2001) Mental rotation and real-world wayfinding. Percept Mot Skills 92(1):19–30

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey RJ, Westervelt H (1995) Issues associated with repeated neuropsychological assessments. Neuropsychol Rev 5(3):203–221

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey RJ, Ortega A, Orsillo SM, Nelles WB, Haase RF (1992) Practice effects in repeated neuropsychological assessments. Clin Neuropsychol 6(1):32–42

    Article  Google Scholar 

  • Newcombe NS, Frick A (2010) Early education for spatial intelligence: why, what, and how. Mind Brain Educ 4(3):102–111

    Article  Google Scholar 

  • Ocklenburg S, Hirnstein M, Ohmann HA, Hausmann M (2011) Mental rotation does not account for sex differences in left–right confusion. Brain Cognit 76(1):166–171

    Article  Google Scholar 

  • Ofte SH (2002) Right–left discrimination: effects of handedness and educational background. Scand J Psychol 43(3):213–219

    Article  PubMed  Google Scholar 

  • Ofte SH, Hugdahl K (2002a) Right–left discrimination in younger and older children measured with two tests containing stimuli on different abstraction levels. Percept Mot Skills 94(3):707–719

    Article  PubMed  Google Scholar 

  • Ofte SH, Hugdahl K (2002b) Rightleft discrimination in male and female, young and old subjects. J Clin Exp Neuropsychol 24(1):82–92

    Article  PubMed  Google Scholar 

  • Parsons LM (1987a) Imagined spatial transformation of one’s body. J Exp Psychol Gen 116(2):172–191

    Article  PubMed  CAS  Google Scholar 

  • Parsons LM (1987b) Imagined spatial transformations of one’s hands and feet. Cognit Psychol 19(2):178–241

    Article  PubMed  CAS  Google Scholar 

  • Parsons TD, Notebaert AJ, Shields EW, Guskiewicz KM (2009) Application of reliable change indices to computerized neuropsychological measures of concussion. Int J Neurosci 119(4):492–507

    Article  PubMed  Google Scholar 

  • Peters M, Laeng B, Latham K, Jackson M, Zaiyouna R, Richardson C (1995) A redrawn Vandenberg and Kuse mental rotations test-different versions and factors that affect performance. Brain Cognit 28(1):39–58

    Article  CAS  Google Scholar 

  • Piaget J, Inhelder B (1948) La représentation de l’espace chez l’enfant. Presses Universitaires de Frances, Paris

  • Ratcliff G (1979) Spatial thought, mental rotation and the right cerebral hemisphere. Neuropsychologia 17(1):49–54

    Article  PubMed  CAS  Google Scholar 

  • Rigal R (1996) Right–left orientation, mental rotation, and perspective-taking: when can children imagine what people see from their viewpoint? Percept Mot Skills 83(3):831–842

    Article  PubMed  CAS  Google Scholar 

  • Shepard RN, Hurwitz S (1984) Upward direction, mental rotation, and discrimination of left and right turns in maps. Cognit 18(1–3):161–193

    Article  CAS  Google Scholar 

  • Shepard RN, Metzler J (1971) Mental rotation of three-dimensional objects. Science 171:701–703

    Article  PubMed  CAS  Google Scholar 

  • Snyder TJ (1991) Self-rated right–left confusability and objectively measured right–left discrimination. Dev Neuropsychol 7(2):219–230

    Article  Google Scholar 

  • Terlecki MS, Newcombe NS, Little M (2008) Durable and generalized effects of spatial experience on mental rotation: gender differences in growth patterns. Appl Cogn Psychol 22(7):996–1013

    Article  Google Scholar 

  • Vogeley K, Fink GR (2003) Neural correlates of the first-person-perspective. Trends Cogn Sci 7(1):38–42

    Article  PubMed  Google Scholar 

  • Voyer D (1995) Effect of practice on laterality in a mental rotation task. Brain Cognit 29(3):326–335

    Article  CAS  Google Scholar 

  • Wai J, Lubinski D, Benbow CP (2009) Spatial ability for STEM domains: aligning over 50 years of cumulative psychological knowledge solidifies its importance. J Educ Psychol 101(4):817–835

    Article  Google Scholar 

  • Wright R, Thompson WL, Ganis G, Newcombe NS, Kosslyn SM (2008) Training generalized spatial skills. Psychonomic Bull Rev 15(4):763–771

    Article  Google Scholar 

  • Zacks JM (2008) Neuroimaging studies of mental rotation: a meta-analysis and review. J Cognit Neurosci 20(1):1–19

    Article  Google Scholar 

  • Zacks JM, Mires J, Tversky B, Hazeltine E (2000) Mental spatial transformations of objects and perspective. Spatial Cognit Comput 2(4):315–332

    Article  Google Scholar 

Download references

Acknowledgments

MP and HJM are supported by the German Research Foundation (Deutsche Forschungsgemeinschaft [DFG]; EC 277). We are very thankful to Sonja Ofte for the stimuli of the Bergen right–left discrimination test. We thank our colleagues in the Physiological Psychology department and the CITmed project for their scientific and technical support and helpful advice. We especially thank Alsonso Ortega for his helpful advice concerning the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Grewe.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grewe, P., Ohmann, H.A., Markowitsch, H.J. et al. The Bergen left–right discrimination test: practice effects, reliable change indices, and strategic performance in the standard and alternate form with inverted stimuli. Cogn Process 15, 159–172 (2014). https://doi.org/10.1007/s10339-013-0587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-013-0587-8

Keywords

Navigation