Skip to main content

Advertisement

Log in

Relationship Between Spatial Abilities, Mental Rotation and Functional Anatomy Learning

  • Published:
Advances in Health Sciences Education Aims and scope Submit manuscript

Abstract

This study investigated the relationship between visuo-spatial representation, mental rotation (MR) and functional anatomy examination results. A total of 184 students completed the Group Embedded Figures Test (GEFT), Mental Rotation Test (MRT) and Gordon Test of Visual Imagery Control. The time spent on personal assignment was also considered. Men were found to score better than women on both GEFT and MRT, but the gender effect was limited to the interaction with MRT ability in the anatomy learning process. Significant correlations were found between visuo-spatial, MR abilities, and anatomy examination results. Data resulting from the best students’ analyzes underscore the effect of high MR ability which may be considered reliable predictor of success in learning anatomy. The use of specific tests during learning sessions may facilitate the acquisition of anatomical knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amorim M.A., Stucchi N., (1997). Viewer- and object-centered mental explorations of an imagined environment are not equivalent Cognitive Brain Research 5: 229–239

    Article  Google Scholar 

  • Black A.A., (2005). Spatial ability and earth science conceptual understanding Journal of Geoscience Education 53: 402–414

    Google Scholar 

  • Cano J.E., Marquez S., (1995). Field dependence–independence of male and female Spanish athletes Perceptual and Motor Skills 80: 1155–1161

    Google Scholar 

  • Carpenter M., Proffitt D.R., (2001). Comparing viewer and array mental rotations in different planes Memory and Cognition 29: 441–448

    Google Scholar 

  • De Andres A.G., Sanchez E., Hidalgo J.J., Diaz M.J., (2004). Appraisal of psychomotor skills of dental students at university Complutense of Madrid European Journal of Dental Education 8: 24–30

    Article  Google Scholar 

  • De’Sperati C., Stucchi N., (2000). Motor imagery and visual event recognition Experimental Brain Research 133: 273–278

    Article  Google Scholar 

  • Garg A.X., Norman G.R., Spero L., Maheshwari P., (1999). Do virtual computer models hinder anatomy learning? Academic Medicine 74: S87–S89

    Article  Google Scholar 

  • Garg A.X., Norman G., Sperotable L., (2001). How medical students learn spatial anatomy Lancet 357: 363–364

    Article  Google Scholar 

  • Gilligan J.H., Welsh F.K., Watts C., Treasure T., (1999). Square pegs in round holes: Has psychometric testing a place in choosing a surgical career? A preliminary report of work in progress Annals of the Royal College of Surgeons of England 81: 73–79

    Google Scholar 

  • Gordon R., (1949). An investigation into some of the factors that favour the formation of stereotyped images British Journal of Psychology 39: 156–167

    Google Scholar 

  • Goss S., Hall C.R., Buckolz E., Fishburne G., (1986). Imagery ability and the acquisition and retention of movements Memory and Cognition, 14: 469–477

    Google Scholar 

  • Guay R.B., (1977). Purdue Spatial Visualization Test: Rotations. Pudue Research Foundation. West Lafayette, IN

    Google Scholar 

  • Guillot A., Collet C., Dittmar A., (2004). Relationship between visual vs. kinesthetic imagery, field dependence–independence and complex motor skills Journal of Psychophysiology 18: 190–199

    Article  Google Scholar 

  • Guillot A., Collet C., (2004). Field dependence–independence in complex motor skills Perceptual and Motor Skills 98: 575–583

    Article  Google Scholar 

  • Guillot A., Collet C., (2005a). Duration of mentally simulated movement: A review Journal of Motor Behavior 37: 10–20

    Article  Google Scholar 

  • Guillot A., Collet C., (2005b). Contribution from neurophysiological and psychological methods to the study of motor imagery Brain Research Reviews 50: 387–397

    Google Scholar 

  • Gunzelmann, G. & Anderson, J.R. (2004). Spatial orientation using map displays: A model of the influence of target location. In Proceedings of the 26th Annual Conference of the Cognitive Science Society, August 4–7, pp. 517–522. Chicago, USA

  • Heil M., Roesler F., Link M., Bajric J., (1998). What is improved if a mental rotation task is repeated – The efficiency of memory access, or the speed of a transformation routine? Psychological Research 61: 99–106

    Article  Google Scholar 

  • Hochberg J., Gellman L., (1977). The effect of landmark features on mental rotation times Memory and Cognition 5: 23–26

    Google Scholar 

  • Huang J., Chao L., (2000). Field dependence versus field independence of students with and without learning disabilities Perceptual and Motor Skills 90: 343–346

    Article  Google Scholar 

  • Jones C.M., Braithwaite V.A., Healy S.D., (2003) The evolution of sex differences in spatial ability Behavioural Neuroscience 117: 403–411

    Article  Google Scholar 

  • Karadi K., Csatho A., Kovacs B., Kosztolanyi P., (2003). Subgroup analysis of sex difference on the Vandenberg-Kuse mental rotation test Perceptual and Motor Skills 96: 197–200

    Article  Google Scholar 

  • Keehner, M., Cohen, C.A., Hegarty, M. & Montello, D.R. (2004a). Cognitive factors and interactivity: Implications for the design and implementation of 3-D computer visualizations for medical education. In 12th Annual Medicine Meets Virtual Reality (MMVR12) Conference, pp. 14–17. Newport Beach, CA, January

  • Keehner M., Tendick F., Meng M.W., Anwar H.P., Hegarty M., Stoller M.M., Duh Q.Y., (2004b). Spatial ability, experience, and skill in laparoscopic surgery American Journal of Surgery 188: 71–75

    Article  Google Scholar 

  • Kelley T.D., Patton D., Allender L., (2001). Error rates in a multiple choice spatial manipulation test Perceptual and Motor Skills 92: 985–992

    Google Scholar 

  • Kosslyn S.M., Di Girolamo G.J., Thompson W.L., Alpert N.M., (1998). Mental rotation of objects versus hands: Neural mechanisms revealed by positron emission tomography Psychophysiology 35: 151–161

    Article  Google Scholar 

  • Linn M., Petersen A.C., (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis Child Development 56: 1479–1498

    Article  Google Scholar 

  • Masters M.S., Sanders B., (1993). Is the gender difference in mental rotation disappearing? Behavioral Genetics 23: 337–341

    Article  Google Scholar 

  • Oltman P.K., Raskin E., Witkin H.A., (1971) Group Embedded Figures Test Consulting Psychologists Press Palo Alto, CA

    Google Scholar 

  • Ozel S., Larue J., Molinaro C., (2004). Relation between sport and spatial imagery: comparison of three groups of participants Journal of Psychology 138: 49–63

    Google Scholar 

  • Parsons L.M., (1987). Imagined spatial transformation of one’s body Journal of Experimental and Psychological Genetics 116: 172–191

    Article  Google Scholar 

  • Parsons L.M., (1994). Temporal and kinematic properties of motor behavior reflected in mentally simulated action Journal of experimental Psychology: Human perception and Performance 20: 709–730

    Article  Google Scholar 

  • Parsons L.M., (2003). Superior parietal cortices and varieties of mental rotation Trends in Cognitive Neurosciences 7: 515–517

    Article  Google Scholar 

  • Parsons T.D., Larson P., Kratz K., Thiebaux M., Bluestein B., Buckwalter J.G., Rizzo A.A., (2004). Sex differences in mental rotation and spatial rotation in a virtual environment Neuropsychologia 42: 555–562

    Article  Google Scholar 

  • Pavlik, P.I. &. Anderson, J.R. (2002). Mental rotation transfer. In: 24th Annual Meeting of the Cognitive Science Society, August, Fairfax, VA

  • Perez-Fabello M.J., Campos A., (2004). Factor structure and internal consistency of the spanish version of the Gordon Test of Visual Imagery Control Perceptual and Motor Skills 94: 761–766

    Google Scholar 

  • Peters M., Laeng B., Latham K., Jackson M., Zaiyouna R., Richardson C., (1995). A redrawn Vandenberg and Kuse mental rotations test: Different versions and factors that affect performance Brain and Cognition 28: 39–58

    Article  Google Scholar 

  • Petit L.S., Pegna A.J., Mayer E., Hauert C.A., (2003). Representation of anatomical constraints in motor imagery: mental rotation of a body segment Brain and Cognition 51: 95–101

    Article  Google Scholar 

  • Richards J.T., Omam C.M., Shebilske W.L., Beall A.C., Liu A., Natapoff A., (2002–2003). Training transfer, and retention of three-dimensional spatial memory in virtual environments Journal of Vestibular Research 12: 223–238

    Google Scholar 

  • Richardson A. (1969). Mental Imagery Springer New-York

    Google Scholar 

  • Rochford K., (1985). Spatial learning disabilities and underachievement among university anatomy students Medical Education 19: 13–26

    Article  Google Scholar 

  • Rumiati R.I., Tomasino B., Vorano L., Umiltà C., De Luca G., (2001). Selective deficit of imagining finger configurations Cortex 37: 730–733

    Google Scholar 

  • Salthouse T.A., (1992). Reasoning and spatial abilities In Satlhouse T.A. (Ed.), The Handbook of Aging and Cognition Lawrence Erlbaum Hillsdale, NJ (pp. 167–211)

    Google Scholar 

  • Seurinck R., Vingerhoetz G., De Lange F.P., Achten E., (2004). Does egocentric mental rotation elicit sex differences? Neuroimage 23: 1440–1449

    Article  Google Scholar 

  • Shepard R.N., Metzler J., (1971). Mental rotation of three dimensional objects Science 171: 701–703

    Article  Google Scholar 

  • Shepard R.N., Feng C., (1972). A chronometric study of mental paper folding Cognitive Psychology 3: 2428–2433

    Article  Google Scholar 

  • Sirigu A., Duhamel J.R., (2001). Motor and visual imagery as two complementary but neurally dissociable processes Journal of Cognitive Neuroscience 13: 910–919

    Article  Google Scholar 

  • Thiriet P. (1982). La formation scientifique des professeurs africains d’éducation physique. Contribution à une didactique de l’anatomie et de la physiologie. [Scientific formation of African professors of physical education. Contribution to didactic of the anatomy and physiology] Doctoral Dissertation, University Lyon II France (p. 164)

  • Tomasino B., Toraldo A., Rumiati R.I., (2003). Dissociation between the mental rotation of visual images and motor images in unilateral brain-damaged patients Brain and Cognition 51: 368–371

    Article  Google Scholar 

  • Tracey M.R., Lathan C.E., (2001). The interaction of spatial ability and motor learning in the transfer of training from a simulator to a real task Studies in Health Technology and Informatics 81: 521–527

    Google Scholar 

  • Vandenberg S., Kuse A., (1978). Mental rotation, a group test of 3-D spatial visualization Perceptual and Motor Skills 47: 599–604

    Google Scholar 

  • Vingerhoets G., Santens P., Van Laere K., Lahorte P., Dierckx R.A., De Reuck J. (2001). Regional brain activity during different paradigms of mental rotation in healthy volunteers: A positron emission tomography study. Neuroimage 13: 381–391

    Article  Google Scholar 

  • Vingerhoets G., De Lange F.P., Vandemaele P., Debmaere K., Achten E., (2002). Motor imagery in mental rotation: an fMRI study Neuroimage 17: 1623–1633

    Article  Google Scholar 

  • Voyer D., Bryden M.P., (1990). Gender, level of spatial ability, and lateralization of mental rotation Brain and Cognition 13: 18–29

    Article  Google Scholar 

  • Wanzel K.R., Hamsta S.J., Anastakis D.J., Matsumoto E.D., Cusimano M.D., (2002). Effect of visuo-spatial ability on learning of spatially complex surgical skills The Lancet 359: 230–231

    Article  Google Scholar 

  • Wexler M., Kosslyn S.M., Berthoz A., (1998). Motor processes in mental rotation Cognition 68: 77–94

    Article  Google Scholar 

  • White K.D., Ashton R., (1977). Visual imagery: One dimension or four? Journal of Mental Imagery 2: 245–252

    Google Scholar 

  • Witkin H.A., (1950). Individual differences in ease of perception of embedded figures Journal of Personality 19: 1–15

    Article  Google Scholar 

  • Witkin H.A., Oltman P.K., Raskin E., Karp S.A., (1971). Manual for the Embedded Figures Tests Consulting Psychologists Palo Alto, CA

    Google Scholar 

  • Wohlschläger A., Wohlschläger A., (1998). Mental and manual rotation Journal of experimental Psychology: Human perception and Performance 24: 397–412

    Article  Google Scholar 

  • Wraga M., Creem S.H., Proffitt D.R., (2000). Updating displays after imagined object and viewer rotations Journal of Experimental Psychology: Learning, Memory and Cognition 26: 153–168

    Article  Google Scholar 

  • Wraga M., Thompson W.L., Alpert N.M., Kosslyn S.M., (2003). Implicit transfer of motor strategies in mental rotation Brain and Cognition 52: 135–143

    Article  Google Scholar 

  • Zacks J., Rypma B., Gabrieli J.D., Tversky B., Glover G.H., (1999). Imagined transformations of bodies: An fMRI investigation Neuropsychologia 37: 1029–1040

    Article  Google Scholar 

Download references

Acknowledgements

HEYDE Martine and RASTELLO Olivier for their technical help, Service PRACTICE, Université Claude Bernard Lyon I, Bâtiment ”Le Quai 43”, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymeric Guillot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillot, A., Champely, S., Batier, . et al. Relationship Between Spatial Abilities, Mental Rotation and Functional Anatomy Learning. Adv in Health Sci Educ 12, 491–507 (2007). https://doi.org/10.1007/s10459-006-9021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10459-006-9021-7

Keywords

Navigation